北海道大学 前期文系 2005年度 問1

解答を見る

解答作成者: 伊藤 愁一

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 北海道大学
学科・方式 前期文系
年度 2005年度
問No 問1
学部 文 ・ 教育 ・ 法 ・ 経済
カテゴリ 複素数と方程式 ・ 微分法と積分法
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[fleqn,12pt]{jsarticle} %\usepackage[dvips,dviout]{graphicx,color} \usepackage{ascmac,array,framed,wrapfig} \usepackage{enumerate,amssymb,amsmath} %\usepackage{picins} %\usepackage[noreplace]{otf} %\usepackage{bm} \newcommand{\mb}[1]{\mbox{\boldmath $ #1 $}} % math-italic の bold 体が使える. % 指定は \mb. 例)\mb{y} : y の bold 体 \newcommand{\MARU}[1]{{\ooalign{\hfil#1\/\hfil\crcr\raise.167ex\hbox{\mathhexbox20D}}}} \def\Noteq{\mathrel{% \setbox0\hbox{=}\hbox{=}\llap{\hbox to\wd0{\hss$\backslash$\hss}}}} \newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}} \newcommand{\Not}[1]{\ooalign{\hfil$\backslash$\hfil\crcr$#1$}} \def\labelenumi{(\theenumi)} \def\theenumi{\arabic{enumi}} \def\theenumii{\roman{enumii}} \pagestyle{empty} \begin{document} 次の問いに答えよ. \begin{enumerate} \item $x$ についての $2$ 次方程式 $x^{2} -2kx -3k^{2} +1=0$ が虚数解をもつような実数 $k$ の値の範囲を求めよ. \item $(1)$ で求めた $k$ の範囲で $\displaystyle \int_{0}^{k} (x^{2} -2kx -3k^{2} +1)dx$ の最小値と最大値を求めよ. \end{enumerate} \end{document}