北海道大学 前期文系 2009年度 問3

解答を見る

解答作成者: 伊藤 愁一

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 北海道大学
学科・方式 前期文系
年度 2009年度
問No 問3
学部 文 ・ 教育 ・ 法 ・ 経済
カテゴリ
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[fleqn,12pt]{jsarticle} \usepackage[dvips]{graphicx,color} \usepackage{ascmac,array,framed} \usepackage{enumerate,amssymb,amsmath} %\usepackage{picins} %\usepackage[noreplace]{otf} %\usepackage{bm} \newcommand{\mb}[1]{\mbox{\boldmath $ #1 $}} % math-italic の bold 体が使える. % 指定は \mb. 例)\mb{y} : y の bold 体 \newcommand{\MARU}[1]{{\ooalign{\hfil#1\/\hfil\crcr\raise.167ex\hbox{\mathhexbox20D}}}} \def\Noteq{\mathrel{% \setbox0\hbox{=}\hbox{=}\llap{\hbox to\wd0{\hss$\backslash$\hss}}}} \newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}} \newcommand{\Not}[1]{\ooalign{\hfil$\backslash$\hfil\crcr$#1$}} \def\labelenumi{(\theenumi)} \def\theenumi{\arabic{enumi}} \def\theenumii{\roman{enumii}} \pagestyle{empty} \begin{document} 実数 $t>0$ に対して,座標平面上に点 P $(t,\,0)$,~点 Q $(2t,\,1-4t^{2})$,~点 R $(-t,\,1-t^{2})$ をとる.~このとき,以下の問いに答えよ. \begin{enumerate} \item P, Q, R が一直線上にあるような $t$ の値を求めよ. \item $(1)$ で求めた値を $t_{0}$ とする.$0 < t < t_{0}$ のとき,~三角形 $\triangle$ PQR の面積 $S(t)$ の最大値とそのときの $t$ の値を求めよ. \end{enumerate} \end{document}