大阪大学 後期理系 1996年度 問2

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 後期理系
年度 1996年度
問No 問2
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
カテゴリ 微分法の応用
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn]{jreport} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{graphicx} \usepackage{delarray} \usepackage{multicol} \usepackage{amscd} \usepackage{pifont} \usepackage{color} \ExecuteOptions{usename} \usepackage{vector3} %\usepackage{myhyper} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} \begin{flushleft} {\color[named]{Emerald}\bfseries 理学部受験者用問題} \end{flushleft} $a > 1$ に対して, 方程式 $2xe^{ax} = e^{ax} - e^{-ax}$ を考える. \begin{enumerate} \renewcommand{\labelenumi}{(\arabic{enumi})} \item  この方程式は正の解をただ1つもつことを示せ. \item  その解を $m(a)$ とかくとき, $1 < a_1 < a_2$ ならば $m(a_1) < m(a_2)$ であることを示せ. \item  $\lim\limits_{m \to \infty} m(a)$ を求めよ. \hfill(配点50点) \end{enumerate} \end{document}