大阪大学 前期理系 1991年度 問2

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 前期理系
年度 1991年度
問No 問2
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
カテゴリ
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn]{jreport} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{color} \ExecuteOptions{usename} \usepackage{vector3} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{graphicx} %\usepackage{myhyper} \usepackage{pifont} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} 原点を通らない直線 \smallskip$l : y = px + 1$ と原点を通る直線 $l' : y = qx$ がある.\smallskip 行列 \smallskip$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ によって表される1次変換 $f$ は $l$ 上の点を $l'$ 上の点に移すものとする. $A^2$ が零行列でないとき $f$ による $l'$ の像は $l'$ であることを示せ. \end{document}