大阪大学 前期理系 1984年度 問4

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 前期理系
年度 1984年度
問No 問4
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
カテゴリ 数列 ・ 関数と極限
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn]{jreport} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{graphicx} \usepackage{delarray} \usepackage{color} \ExecuteOptions{usename} \usepackage{vector3} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{custom_mori} \usepackage{pifont} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} $x \neq 1$ に対して $f_1(x) = \dfrac{1}{(x - 1)^2}$ とおく. $n = 2,\,\,3,\,\,\cdots$ に対して, \[ f_n(x) = xf_{n-1}(x) + n \] によって関数 $f_2(x),\,\,f_3(x),\,\,\cdots$ を定義する. このとき $\lim\limits_{n \to \infty}\dfrac{f_n(e^\frac{1}{n})}{n^2}$ を求めよ. \end{document}