大阪大学 前期理系 1997年度 問1

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 前期理系
年度 1997年度
問No 問1
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
カテゴリ 確率
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn]{jreport} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{vector3} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{color} \ExecuteOptions{usename} \usepackage{graphicx} \usepackage{pifont} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} 座標平面において, $x$座標と$y$座標がともに整数である点を格子点とよぶ. $x$座標と$y$座標がともに0以上3以下である16個の格子点を図1のように線分で結んで得られる図形$L$を考える. 動点Aは点$(0,\,\,0)$を出発し, 点$(3,\,\,3)$に到達するまで$L$上を等速で移動する. ただし,格子点では静止せずに$x$軸の正の方向または$y$軸の正の方向へ進み, 次の格子点または線分上を直進する. 動点Bは点$(3,\,\,3)$を出発し, 点$(0,\,\,0)$に到達するまで$L$上を等速で移動する. ただし,格子点では静止せずに$x$軸の負の方向または$y$軸の負の方向へ進み, 次の格子点または線分上を直進する. A,Bは同時に出発し, Aの速さはBの速さの3倍とする. このとき次の問いに答えよ. \begin{enumerate} \renewcommand{\labelenumi}{(\arabic{enumi})} \item  AとBが出会う可能性のある$L$上の点をすべて求め, それらの座標を書け. \item  Aは進む方向の可能性が2つある格子点で, 確率 $p$ で$y$軸の正の方向に, 確率 $1 - p$ で$x$軸の正の方向に進むとする. 同様に,Bは進む方向の可能性が2つある格子点では, 確率 $p$ で$y$軸の負の方向に, 確率 $1 - p$ で$x$軸の負の方向に進むとする. ただし,$0 < p < 1$ とする. このとき,(1)で求めた各点において, AとBが出会う確率をそれぞれ求めよ. \item  (2)で求めた確率のうち, $x$座標が最も小さい点で出会う確率が, 他のどの確率よりも大きくなるためには $p$ はどのような範囲にあればよいか. \begin{center} %\input{osaka97s1f_zu_1} %WinTpicVersion3.08 \unitlength 0.1in \begin{picture}( 35.9300, 16.7700)( 8.1000,-24.7000) % VECTOR 2 0 3 0 % 2 1163 2241 1163 981 % \special{pn 8}% \special{pa 1164 2242}% \special{pa 1164 982}% \special{fp}% \special{sh 1}% \special{pa 1164 982}% \special{pa 1144 1048}% \special{pa 1164 1034}% \special{pa 1184 1048}% \special{pa 1164 982}% \special{fp}% % VECTOR 2 0 3 0 % 2 1163 2241 2423 2241 % \special{pn 8}% \special{pa 1164 2242}% \special{pa 2424 2242}% \special{fp}% \special{sh 1}% \special{pa 2424 2242}% \special{pa 2356 2222}% \special{pa 2370 2242}% \special{pa 2356 2262}% \special{pa 2424 2242}% \special{fp}% % LINE 2 0 3 0 % 2 2243 2241 2243 1161 % \special{pn 8}% \special{pa 2244 2242}% \special{pa 2244 1162}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1161 1163 1161 % \special{pn 8}% \special{pa 2244 1162}% \special{pa 1164 1162}% \special{fp}% % LINE 2 0 3 0 % 2 1523 2241 1523 1161 % \special{pn 8}% \special{pa 1524 2242}% \special{pa 1524 1162}% \special{fp}% % LINE 2 0 3 0 % 2 1883 2241 1883 1161 % \special{pn 8}% \special{pa 1884 2242}% \special{pa 1884 1162}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1521 1163 1521 % \special{pn 8}% \special{pa 2244 1522}% \special{pa 1164 1522}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1881 1163 1881 % \special{pn 8}% \special{pa 2244 1882}% \special{pa 1164 1882}% \special{fp}% % STR 2 0 3 0 % 3 2450 2097 2450 2277 2 0 % $x$ \put(24.5000,-22.7700){\makebox(0,0)[lb]{$x$}}% % STR 2 0 3 0 % 3 1136 783 1136 963 2 0 % $y$ \put(11.3600,-9.6300){\makebox(0,0)[lb]{$y$}}% % STR 2 0 3 0 % 3 2270 1000 2270 1180 2 0 % {\footnotesize$(3,\,3)$} \put(22.7000,-11.8000){\makebox(0,0)[lb]{{\footnotesize$(3,\,3)$}}}% % STR 2 0 3 0 % 3 810 2190 810 2370 2 0 % {\footnotesize$(0,\,0)$} \put(8.1000,-23.7000){\makebox(0,0)[lb]{{\footnotesize$(0,\,0)$}}}% % VECTOR 2 0 3 0 % 2 1073 2151 1073 1971 % \special{pn 8}% \special{pa 1074 2152}% \special{pa 1074 1972}% \special{fp}% \special{sh 1}% \special{pa 1074 1972}% \special{pa 1054 2038}% \special{pa 1074 2024}% \special{pa 1094 2038}% \special{pa 1074 1972}% \special{fp}% % VECTOR 2 0 3 0 % 2 1253 2331 1433 2331 % \special{pn 8}% \special{pa 1254 2332}% \special{pa 1434 2332}% \special{fp}% \special{sh 1}% \special{pa 1434 2332}% \special{pa 1366 2312}% \special{pa 1380 2332}% \special{pa 1366 2352}% \special{pa 1434 2332}% \special{fp}% % VECTOR 2 0 3 0 % 2 2153 1071 1973 1071 % \special{pn 8}% \special{pa 2154 1072}% \special{pa 1974 1072}% \special{fp}% \special{sh 1}% \special{pa 1974 1072}% \special{pa 2040 1092}% \special{pa 2026 1072}% \special{pa 2040 1052}% \special{pa 1974 1072}% \special{fp}% % VECTOR 2 0 3 0 % 2 2333 1251 2333 1431 % \special{pn 8}% \special{pa 2334 1252}% \special{pa 2334 1432}% \special{fp}% \special{sh 1}% \special{pa 2334 1432}% \special{pa 2354 1364}% \special{pa 2334 1378}% \special{pa 2314 1364}% \special{pa 2334 1432}% \special{fp}% % STR 2 0 3 0 % 3 960 2050 960 2140 2 0 % {\scriptsize$p$} \put(9.6000,-21.4000){\makebox(0,0)[lb]{{\scriptsize$p$}}}% % STR 2 0 3 0 % 3 1220 2390 1220 2480 2 0 % {\scriptsize$1-p$} \put(12.2000,-24.8000){\makebox(0,0)[lb]{{\scriptsize$1-p$}}}% % STR 2 0 3 0 % 3 1940 930 1940 1020 2 0 % {\scriptsize$1-p$} \put(19.4000,-10.2000){\makebox(0,0)[lb]{{\scriptsize$1-p$}}}% % STR 2 0 3 0 % 3 2390 1280 2390 1370 2 0 % {\scriptsize$p$} \put(23.9000,-13.7000){\makebox(0,0)[lb]{{\scriptsize$p$}}}% % BOX 3 0 3 0 % 2 3323 1161 4403 2241 % \special{pn 4}% \special{pa 3324 1162}% \special{pa 4404 1162}% \special{pa 4404 2242}% \special{pa 3324 2242}% \special{pa 3324 1162}% \special{fp}% % LINE 3 0 3 0 % 2 4043 2241 4043 1161 % \special{pn 4}% \special{pa 4044 2242}% \special{pa 4044 1162}% \special{fp}% % LINE 3 0 3 0 % 2 3683 2241 3683 1161 % \special{pn 4}% \special{pa 3684 2242}% \special{pa 3684 1162}% \special{fp}% % LINE 3 0 3 0 % 2 3323 1881 4403 1881 % \special{pn 4}% \special{pa 3324 1882}% \special{pa 4404 1882}% \special{fp}% % LINE 3 0 3 0 % 2 3323 1521 4403 1521 % \special{pn 4}% \special{pa 3324 1522}% \special{pa 4404 1522}% \special{fp}% % STR 2 0 3 0 % 3 3350 2350 3350 2440 2 0 % {\footnotesize A,Bの経路の例} \put(33.5000,-24.4000){\makebox(0,0)[lb]{{\footnotesize A,Bの経路の例}}}% % POLYLINE 0 0 3 0 % 7 3323 2241 3323 1881 4043 1881 4043 1521 4403 1521 4403 1161 4403 1161 % \special{pn 20}% \special{pa 3324 2242}% \special{pa 3324 1882}% \special{pa 4044 1882}% \special{pa 4044 1522}% \special{pa 4404 1522}% \special{pa 4404 1162}% \special{pa 4404 1162}% \special{fp}% % STR 2 0 3 0 % 3 3750 2550 3750 2640 2 0 % {\footnotesize 図2} \put(37.5000,-26.4000){\makebox(0,0)[lb]{{\footnotesize 図2}}}% % STR 2 0 3 0 % 3 1590 2550 1590 2640 2 0 % {\footnotesize 図1} \put(15.9000,-26.4000){\makebox(0,0)[lb]{{\footnotesize 図1}}}% % STR 2 0 3 0 % 3 1650 2350 1650 2440 2 0 % {\footnotesize $L$} \put(16.5000,-24.4000){\makebox(0,0)[lb]{{\footnotesize $L$}}}% \end{picture}% \end{center} \end{enumerate} \vskip 1zw 以下, {\color[named]{OrangeRed}\bfseries\sffamily 1997年度前期理系}の全問題を挙げる. \newpage \noindent{\large \bfseries \fbox{1}} \vskip 1mm 座標平面において, $x$座標と$y$座標がともに整数である点を格子点とよぶ. $x$座標と$y$座標がともに0以上3以下である16個の格子点を図1のように線分で結んで得られる図形$L$を考える. 動点Aは点$(0,\,\,0)$を出発し, 点$(3,\,\,3)$に到達するまで$L$上を等速で移動する. ただし,格子点では静止せずに$x$軸の正の方向または$y$軸の正の方向へ進み, 次の格子点または線分上を直進する. 動点Bは点$(3,\,\,3)$を出発し, 点$(0,\,\,0)$に到達するまで$L$上を等速で移動する. ただし,格子点では静止せずに$x$軸の負の方向または$y$軸の負の方向へ進み, 次の格子点または線分上を直進する. A,Bは同時に出発し, Aの速さはBの速さの3倍とする. このとき次の問いに答えよ. \begin{enumerate} \renewcommand{\labelenumi}{(\arabic{enumi})} \item  AとBが出会う可能性のある$L$上の点をすべて求め, それらの座標を書け. \item  Aは進む方向の可能性が2つある格子点で, 確率 $p$ で$y$軸の正の方向に, 確率 $1 - p$ で$x$軸の正の方向に進むとする. 同様に,Bは進む方向の可能性が2つある格子点では, 確率 $p$ で$y$軸の負の方向に, 確率 $1 - p$ で$x$軸の負の方向に進むとする. ただし,$0 < p < 1$ とする. このとき,(1)で求めた各点において, AとBが出会う確率をそれぞれ求めよ. \item  (2)で求めた確率のうち, $x$座標が最も小さい点で出会う確率が, 他のどの確率よりも大きくなるためには $p$ はどのような範囲にあればよいか.\\ \hfill(配点率20%) \vspace{-1zw} \begin{center} %\input{osaka97s1f_zu_1} %WinTpicVersion3.08 \unitlength 0.1in \begin{picture}( 35.9300, 16.7700)( 8.1000,-24.7000) % VECTOR 2 0 3 0 % 2 1163 2241 1163 981 % \special{pn 8}% \special{pa 1164 2242}% \special{pa 1164 982}% \special{fp}% \special{sh 1}% \special{pa 1164 982}% \special{pa 1144 1048}% \special{pa 1164 1034}% \special{pa 1184 1048}% \special{pa 1164 982}% \special{fp}% % VECTOR 2 0 3 0 % 2 1163 2241 2423 2241 % \special{pn 8}% \special{pa 1164 2242}% \special{pa 2424 2242}% \special{fp}% \special{sh 1}% \special{pa 2424 2242}% \special{pa 2356 2222}% \special{pa 2370 2242}% \special{pa 2356 2262}% \special{pa 2424 2242}% \special{fp}% % LINE 2 0 3 0 % 2 2243 2241 2243 1161 % \special{pn 8}% \special{pa 2244 2242}% \special{pa 2244 1162}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1161 1163 1161 % \special{pn 8}% \special{pa 2244 1162}% \special{pa 1164 1162}% \special{fp}% % LINE 2 0 3 0 % 2 1523 2241 1523 1161 % \special{pn 8}% \special{pa 1524 2242}% \special{pa 1524 1162}% \special{fp}% % LINE 2 0 3 0 % 2 1883 2241 1883 1161 % \special{pn 8}% \special{pa 1884 2242}% \special{pa 1884 1162}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1521 1163 1521 % \special{pn 8}% \special{pa 2244 1522}% \special{pa 1164 1522}% \special{fp}% % LINE 2 0 3 0 % 2 2243 1881 1163 1881 % \special{pn 8}% \special{pa 2244 1882}% \special{pa 1164 1882}% \special{fp}% % STR 2 0 3 0 % 3 2450 2097 2450 2277 2 0 % $x$ \put(24.5000,-22.7700){\makebox(0,0)[lb]{$x$}}% % STR 2 0 3 0 % 3 1136 783 1136 963 2 0 % $y$ \put(11.3600,-9.6300){\makebox(0,0)[lb]{$y$}}% % STR 2 0 3 0 % 3 2270 1000 2270 1180 2 0 % {\footnotesize$(3,\,3)$} \put(22.7000,-11.8000){\makebox(0,0)[lb]{{\footnotesize$(3,\,3)$}}}% % STR 2 0 3 0 % 3 810 2190 810 2370 2 0 % {\footnotesize$(0,\,0)$} \put(8.1000,-23.7000){\makebox(0,0)[lb]{{\footnotesize$(0,\,0)$}}}% % VECTOR 2 0 3 0 % 2 1073 2151 1073 1971 % \special{pn 8}% \special{pa 1074 2152}% \special{pa 1074 1972}% \special{fp}% \special{sh 1}% \special{pa 1074 1972}% \special{pa 1054 2038}% \special{pa 1074 2024}% \special{pa 1094 2038}% \special{pa 1074 1972}% \special{fp}% % VECTOR 2 0 3 0 % 2 1253 2331 1433 2331 % \special{pn 8}% \special{pa 1254 2332}% \special{pa 1434 2332}% \special{fp}% \special{sh 1}% \special{pa 1434 2332}% \special{pa 1366 2312}% \special{pa 1380 2332}% \special{pa 1366 2352}% \special{pa 1434 2332}% \special{fp}% % VECTOR 2 0 3 0 % 2 2153 1071 1973 1071 % \special{pn 8}% \special{pa 2154 1072}% \special{pa 1974 1072}% \special{fp}% \special{sh 1}% \special{pa 1974 1072}% \special{pa 2040 1092}% \special{pa 2026 1072}% \special{pa 2040 1052}% \special{pa 1974 1072}% \special{fp}% % VECTOR 2 0 3 0 % 2 2333 1251 2333 1431 % \special{pn 8}% \special{pa 2334 1252}% \special{pa 2334 1432}% \special{fp}% \special{sh 1}% \special{pa 2334 1432}% \special{pa 2354 1364}% \special{pa 2334 1378}% \special{pa 2314 1364}% \special{pa 2334 1432}% \special{fp}% % STR 2 0 3 0 % 3 960 2050 960 2140 2 0 % {\scriptsize$p$} \put(9.6000,-21.4000){\makebox(0,0)[lb]{{\scriptsize$p$}}}% % STR 2 0 3 0 % 3 1220 2390 1220 2480 2 0 % {\scriptsize$1-p$} \put(12.2000,-24.8000){\makebox(0,0)[lb]{{\scriptsize$1-p$}}}% % STR 2 0 3 0 % 3 1940 930 1940 1020 2 0 % {\scriptsize$1-p$} \put(19.4000,-10.2000){\makebox(0,0)[lb]{{\scriptsize$1-p$}}}% % STR 2 0 3 0 % 3 2390 1280 2390 1370 2 0 % {\scriptsize$p$} \put(23.9000,-13.7000){\makebox(0,0)[lb]{{\scriptsize$p$}}}% % BOX 3 0 3 0 % 2 3323 1161 4403 2241 % \special{pn 4}% \special{pa 3324 1162}% \special{pa 4404 1162}% \special{pa 4404 2242}% \special{pa 3324 2242}% \special{pa 3324 1162}% \special{fp}% % LINE 3 0 3 0 % 2 4043 2241 4043 1161 % \special{pn 4}% \special{pa 4044 2242}% \special{pa 4044 1162}% \special{fp}% % LINE 3 0 3 0 % 2 3683 2241 3683 1161 % \special{pn 4}% \special{pa 3684 2242}% \special{pa 3684 1162}% \special{fp}% % LINE 3 0 3 0 % 2 3323 1881 4403 1881 % \special{pn 4}% \special{pa 3324 1882}% \special{pa 4404 1882}% \special{fp}% % LINE 3 0 3 0 % 2 3323 1521 4403 1521 % \special{pn 4}% \special{pa 3324 1522}% \special{pa 4404 1522}% \special{fp}% % STR 2 0 3 0 % 3 3350 2350 3350 2440 2 0 % {\footnotesize A,Bの経路の例} \put(33.5000,-24.4000){\makebox(0,0)[lb]{{\footnotesize A,Bの経路の例}}}% % POLYLINE 0 0 3 0 % 7 3323 2241 3323 1881 4043 1881 4043 1521 4403 1521 4403 1161 4403 1161 % \special{pn 20}% \special{pa 3324 2242}% \special{pa 3324 1882}% \special{pa 4044 1882}% \special{pa 4044 1522}% \special{pa 4404 1522}% \special{pa 4404 1162}% \special{pa 4404 1162}% \special{fp}% % STR 2 0 3 0 % 3 3750 2550 3750 2640 2 0 % {\footnotesize 図2} \put(37.5000,-26.4000){\makebox(0,0)[lb]{{\footnotesize 図2}}}% % STR 2 0 3 0 % 3 1590 2550 1590 2640 2 0 % {\footnotesize 図1} \put(15.9000,-26.4000){\makebox(0,0)[lb]{{\footnotesize 図1}}}% % STR 2 0 3 0 % 3 1650 2350 1650 2440 2 0 % {\footnotesize $L$} \put(16.5000,-24.4000){\makebox(0,0)[lb]{{\footnotesize $L$}}}% \end{picture}% \end{center} \end{enumerate} \vskip 1zw \noindent{\large \bfseries \fbox{2}} \vskip 1mm 平面上において, 直線 $l$ と, $l$ 上にない点Aをとる. 直線 $l$ 上に点Bを線分ABと直線 $l$ が直交するようにとり, 点Bを中心として直線 $l$ を角度$\theta$だけ回転して得られる直線を $m$ とする. 直線 $l$ 上にない点Pをとり, 直線 $l$ に関してPと対称な点Qをとる. また点Aを中心として点Qを角度$2\theta$だけ回転して得られる点をRとする. このとき線分PRの中点Mは直線 $m$ 上にあることを証明せよ. \hfill(配点率20%) \vskip 2zw \hfill{\color[named]{MidnightBlue} \ding{"2B} 次のページに続く} \newpage \noindent{\large \bfseries \fbox{3}} \vskip 1mm \smallskip 楕円 \smallskip$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1\,\,\,(a > b > 0)$ と双曲線 $\dfrac{x^2}{a^2} - \dfrac{y^2}{c^2} = 1\,\,\,(c > 0)$ を考える. 点$\P(s,\,\,t)\,\,\,(s > 0,\,\,\,t > 0)$を双曲線上にとり, 原点Oと点Pを結ぶ線分と楕円の交点をQとする. 点Pにおける双曲線の接線が$x$軸と交わる点をA, 点Qにおける楕円の接線が$x$軸と交わる点をBとする. 点Pを直線PAと直線QBが直交するようにとるとき, 以下の問いに答えよ. \begin{enumerate} \renewcommand{\labelenumi}{(\arabic{enumi})} \item  点Pの座標を求めよ. \item  点A,Bはそれぞれ楕円,双曲線の焦点であることを示せ. \item  $k$ を $0 < k < 1$ をみたす定数とする. $a,\,\,b,\,\,c$ が $a^2 + c^2 = 1,\,\,\,a^2 - b^2 = k^2$ をみたしながら変化するとき, 直線PAと直線QBの交点Rの$y$座標が最大となるような $a,\,\,b,\,\,c$ を求めよ. \hfill(配点率20%) \end{enumerate} \vskip 1zw \noindent{\large \bfseries \fbox{4}} \vskip 1mm $a$ は実数とする.曲線 $y=e^x$ 上の各点における法線のうちで, 点$\P(a,\,\,3)$を通るものの個数を $n(a)$ とする.$n(a)$ を求めよ. \hfill (配点率20%) \vskip 2zw \noindent{\large \bfseries \fbox{5}} \vskip 1mm 関数 $f(\theta) = \sqrt{\vphantom{b} 2}\,\sin^2\theta + \cos\theta$ に対し, 次の条件をみたす正の数 $a$ を考える. \begin{align*} \left\{ \begin{array}{lll} \smallskip \zettaiti{\theta} < a & ならば & f(\theta) > 0 \\ \zettaiti{\theta} = a & ならば & f(\theta) = 0 \end{array} \right. \end{align*} \begin{enumerate} \renewcommand{\labelenumi}{(\arabic{enumi})} \item  $a$ の値を求めよ. \item  曲線 $C$ を媒介変数 $\theta\,\,\,(-a \leqq \theta \leqq a)$ を用いて \\ \begin{minipage}{250pt} \begin{align*} C : \left\{ \begin{array}{l} \smallskip x = f(\theta) \\ y = \sin\theta \end{array} \right. \end{align*} で定める. $x$軸に平行な直線 $y = t$ と曲線 $C$ が共有点をもつような 実数 $t$ の範囲を求め, 共有点の$x$座標を $t$ で表せ. \item  曲線 $C$ と$y$軸で囲まれる図形を, $y$軸のまわりに1回転してできる立体の体積を求めよ.\\ \hfill(配点率20%) \end{minipage} \begin{minipage}{180pt} %\input{osaka97s5f_zu_2} %WinTpicVersion3.08 \unitlength 0.1in \begin{picture}( 16.3900, 17.3000)( 9.0600,-26.4400) % STR 2 0 3 0 % 3 1176 976 1176 985 4 3600 % $y$ \put(11.7600,-9.8500){\makebox(0,0)[rt]{$y$}}% % STR 2 0 3 0 % 3 2550 1841 2550 1850 4 3600 % $x$ \put(25.5000,-18.5000){\makebox(0,0)[rt]{$x$}}% % VECTOR 2 0 3 0 % 2 1197 2644 1197 985 % \special{pn 8}% \special{pa 1198 2644}% \special{pa 1198 986}% \special{fp}% \special{sh 1}% \special{pa 1198 986}% \special{pa 1178 1052}% \special{pa 1198 1038}% \special{pa 1218 1052}% \special{pa 1198 986}% \special{fp}% % VECTOR 2 0 3 0 % 2 990 1815 2545 1815 % \special{pn 8}% \special{pa 990 1816}% \special{pa 2546 1816}% \special{fp}% \special{sh 1}% \special{pa 2546 1816}% \special{pa 2478 1796}% \special{pa 2492 1816}% \special{pa 2478 1836}% \special{pa 2546 1816}% \special{fp}% % FUNC 2 0 3 0 % 9 990 985 2545 2644 1197 1815 1301 1815 1197 1711 990 985 2545 2644 50 3 0 2 % 6.2(sqrt(2)(sin(t))^2+cos(t))///6.2sin(t)///-3pi/4///3pi/4 \special{pn 8}% \special{pa 1198 2272}% \special{pa 1224 2280}% \special{pa 1250 2288}% \special{pa 1276 2296}% \special{pa 1302 2304}% \special{pa 1328 2312}% \special{pa 1354 2320}% \special{pa 1380 2328}% \special{pa 1406 2334}% \special{pa 1432 2342}% \special{pa 1458 2348}% \special{pa 1484 2356}% \special{pa 1510 2362}% \special{pa 1536 2368}% \special{pa 1562 2374}% \special{pa 1588 2380}% \special{pa 1612 2386}% \special{pa 1636 2392}% \special{pa 1662 2398}% \special{pa 1686 2402}% \special{pa 1710 2408}% \special{pa 1732 2412}% \special{pa 1756 2416}% \special{pa 1778 2420}% \special{pa 1802 2424}% \special{pa 1824 2428}% \special{pa 1844 2432}% \special{pa 1866 2436}% \special{pa 1886 2440}% \special{pa 1906 2442}% \special{pa 1926 2444}% \special{pa 1944 2448}% \special{pa 1962 2450}% \special{pa 1980 2452}% \special{pa 1998 2454}% \special{pa 2014 2456}% \special{pa 2030 2456}% \special{pa 2046 2458}% \special{pa 2060 2458}% \special{pa 2074 2460}% \special{pa 2088 2460}% \special{pa 2102 2460}% \special{pa 2114 2460}% \special{pa 2126 2460}% \special{pa 2136 2460}% \special{pa 2146 2460}% \special{pa 2156 2458}% \special{pa 2164 2458}% \special{pa 2174 2456}% \special{pa 2180 2454}% \special{pa 2188 2452}% \special{pa 2194 2450}% \special{pa 2200 2448}% \special{pa 2206 2446}% \special{pa 2210 2442}% \special{pa 2214 2440}% \special{pa 2216 2436}% \special{pa 2220 2434}% \special{pa 2222 2430}% \special{pa 2222 2426}% \special{pa 2224 2422}% \special{pa 2224 2418}% \special{pa 2222 2414}% \special{pa 2222 2408}% \special{pa 2220 2404}% \special{pa 2218 2398}% \special{pa 2216 2394}% \special{pa 2214 2388}% \special{pa 2210 2382}% \special{pa 2206 2376}% \special{pa 2202 2370}% \special{pa 2196 2364}% \special{pa 2192 2358}% \special{pa 2186 2352}% \special{pa 2180 2344}% \special{pa 2174 2338}% \special{pa 2166 2330}% \special{pa 2160 2322}% \special{pa 2152 2314}% \special{pa 2144 2308}% \special{pa 2138 2300}% \special{pa 2128 2292}% \special{pa 2120 2282}% \special{pa 2112 2274}% \special{pa 2104 2266}% \special{pa 2094 2256}% \special{pa 2086 2248}% \special{pa 2076 2238}% \special{pa 2068 2230}% \special{pa 2058 2220}% \special{pa 2050 2210}% \special{pa 2040 2202}% \special{pa 2032 2192}% \special{pa 2022 2182}% \special{pa 2012 2172}% \special{pa 2004 2162}% \special{pa 1994 2150}% \special{pa 1986 2140}% \special{pa 1978 2130}% \special{pa 1968 2120}% \special{pa 1960 2108}% \special{pa 1952 2098}% \special{pa 1944 2086}% \special{pa 1936 2076}% \special{pa 1928 2064}% \special{pa 1920 2052}% \special{pa 1914 2042}% \special{pa 1906 2030}% \special{pa 1900 2018}% \special{pa 1894 2008}% \special{pa 1888 1996}% \special{pa 1882 1984}% \special{pa 1876 1972}% \special{pa 1872 1960}% \special{pa 1868 1948}% \special{pa 1862 1936}% \special{pa 1860 1924}% \special{pa 1856 1912}% \special{pa 1852 1900}% \special{pa 1850 1888}% \special{pa 1848 1876}% \special{pa 1846 1864}% \special{pa 1844 1852}% \special{pa 1844 1840}% \special{pa 1842 1828}% \special{pa 1842 1816}% \special{pa 1842 1804}% \special{pa 1844 1792}% \special{pa 1844 1780}% \special{pa 1846 1766}% \special{pa 1848 1754}% \special{pa 1850 1742}% \special{pa 1852 1730}% \special{pa 1856 1718}% \special{pa 1860 1706}% \special{pa 1862 1694}% \special{pa 1868 1682}% \special{pa 1872 1670}% \special{pa 1876 1660}% \special{pa 1882 1648}% \special{pa 1888 1636}% \special{pa 1894 1624}% \special{pa 1900 1612}% \special{pa 1906 1600}% \special{pa 1914 1590}% \special{pa 1920 1578}% \special{pa 1928 1566}% \special{pa 1936 1556}% \special{pa 1944 1544}% \special{pa 1952 1534}% \special{pa 1960 1522}% \special{pa 1968 1512}% \special{pa 1978 1502}% \special{pa 1986 1490}% \special{pa 1994 1480}% \special{pa 2004 1470}% \special{pa 2012 1460}% \special{pa 2022 1450}% \special{pa 2032 1440}% \special{pa 2040 1430}% \special{pa 2050 1420}% \special{pa 2058 1410}% \special{pa 2068 1402}% \special{pa 2076 1392}% \special{pa 2086 1384}% \special{pa 2094 1374}% \special{pa 2104 1366}% \special{pa 2112 1356}% \special{pa 2120 1348}% \special{pa 2128 1340}% \special{pa 2138 1332}% \special{pa 2144 1324}% \special{pa 2152 1316}% \special{pa 2160 1308}% \special{pa 2166 1302}% \special{pa 2174 1294}% \special{pa 2180 1286}% \special{pa 2186 1280}% \special{pa 2192 1274}% \special{pa 2196 1266}% \special{pa 2202 1260}% \special{pa 2206 1254}% \special{pa 2210 1248}% \special{pa 2214 1242}% \special{pa 2216 1238}% \special{pa 2218 1232}% \special{pa 2220 1226}% \special{pa 2222 1222}% \special{pa 2222 1218}% \special{pa 2224 1214}% \special{pa 2224 1208}% \special{pa 2222 1204}% \special{pa 2222 1202}% \special{pa 2220 1198}% \special{pa 2216 1194}% \special{pa 2214 1190}% \special{pa 2210 1188}% \special{pa 2206 1186}% \special{pa 2200 1182}% \special{pa 2194 1180}% \special{pa 2188 1178}% \special{pa 2180 1176}% \special{pa 2174 1176}% \special{pa 2164 1174}% \special{pa 2156 1172}% \special{pa 2146 1172}% \special{pa 2136 1172}% \special{pa 2126 1170}% \special{pa 2114 1170}% \special{pa 2102 1170}% \special{pa 2088 1172}% \special{pa 2074 1172}% \special{pa 2060 1172}% \special{pa 2046 1174}% \special{pa 2030 1174}% \special{pa 2014 1176}% \special{pa 1998 1178}% \special{pa 1980 1180}% \special{pa 1962 1182}% \special{pa 1944 1184}% \special{pa 1926 1186}% \special{pa 1906 1188}% \special{pa 1886 1192}% \special{pa 1866 1196}% \special{pa 1844 1198}% \special{pa 1824 1202}% \special{pa 1802 1206}% \special{pa 1778 1210}% \special{pa 1756 1214}% \special{pa 1732 1220}% \special{pa 1710 1224}% \special{pa 1686 1228}% \special{pa 1662 1234}% \special{pa 1636 1240}% \special{pa 1612 1244}% \special{pa 1588 1250}% \special{pa 1562 1256}% \special{pa 1536 1262}% \special{pa 1510 1268}% \special{pa 1484 1276}% \special{pa 1458 1282}% \special{pa 1432 1290}% \special{pa 1406 1296}% \special{pa 1380 1304}% \special{pa 1354 1312}% \special{pa 1328 1318}% \special{pa 1302 1326}% \special{pa 1276 1334}% \special{pa 1250 1342}% \special{pa 1224 1352}% \special{pa 1198 1360}% \special{sp}% % STR 2 0 3 0 % 3 1405 1032 1405 1084 2 0 % {\scriptsize 曲線$C$の概形} \put(14.0500,-10.8400){\makebox(0,0)[lb]{{\scriptsize 曲線$C$の概形}}}% % STR 2 0 3 0 % 3 1070 1840 1070 1940 2 0 % {\small O} \put(10.7000,-19.4000){\makebox(0,0)[lb]{{\small O}}}% \end{picture}% \end{minipage} \end{enumerate} \end{document}