大阪大学 前期理系 2015年度 問3

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 前期理系
年度 2015年度
問No 問3
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
カテゴリ 式と証明
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn,dvipdfmx]{jreport} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{vector3} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{color} \ExecuteOptions{usename} \def\Op{{\mathrm{O}}} \usepackage{graphicx} \usepackage{pifont} \usepackage{fancybox} \usepackage{custom_mori} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} 以下の問いに答えよ. \begin{enumerate} \item[(1)]  $\sqrt{\vphantom{b} 2}$ と $\sqrt[3]{\vphantom{b} 3}$ が 無理数であることを示せ. %\medskip \item[(2)]  $p,\ q,\ \sqrt{\vphantom{b} 2}\,p + \sqrt[3]{\vphantom{b} 3}\,q$ が すべて有理数であるとする. そのとき,$p = q = 0$ であることを示せ. \end{enumerate} \end{document}