解答を見る
解答作成者: 森 宏征
入試情報
大学名 |
大阪大学 |
学科・方式 |
文系 |
年度 |
2015年度 |
問No |
問1 |
学部 |
文学部 ・ 人間科学部 ・ 外国語学部 ・ 法学部 ・ 経済学部
|
カテゴリ |
方程式と不等式
|
状態 |
 |
\documentclass[a4paper,12pt,fleqn,dvipdfmx]{jreport}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{ascmac}
\usepackage{vector3}
\setlength{\topmargin}{-25mm}
\setlength{\oddsidemargin}{2.5mm}
\setlength{\textwidth}{420pt}
\setlength{\textheight}{700pt}
\usepackage{color}
\ExecuteOptions{usename}
\def\Op{{\mathrm{O}}}
\usepackage{graphicx}
\usepackage{pifont}
\usepackage{fancybox}
\usepackage{custom_mori}
\begin{document}
\setlength{\abovedisplayskip}{0.5zw}
\setlength{\belowdisplayskip}{0.5zw}
実数 $x,\ y$ が $\zettaiti{x} \leqq 1,\enskip
\zettaiti{y} \leqq 1$ を満たすとき,
不等式
\[
0
\leqq x^2 + y^2 - 2x^2y^2
+ 2xy\sqrt{\vphantom{b} 1 - x^2}\sqrt{\vphantom{b} 1 - y^2}
\leqq 1
\]
が成り立つことを示せ.
\end{document}