京都府立医科大学 前期 1993年度 問4

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 京都府立医科大学
学科・方式 前期
年度 1993年度
問No 問4
学部 医学部
カテゴリ 関数と極限 ・ 微分法 ・ 積分法
状態 解答なし 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

% % すうじあむはアップするファイルで完結したTeXソースでないといけない. % このひな形で表示確認をしよう. % \documentclass[b5paper,fleqn,papersize]{jsarticle} %=========================================================== % ■余白の設定 B5 %----------------------------------------------------------- \setlength{\oddsidemargin}{-5.4truemm} % 左マージン \setlength{\topmargin}{-15.4truemm} % 上マージン \setlength{\textwidth}{14.2cm} % B5 サイズ用 \setlength{\headheight}{2zw} \setlength{\headsep}{2zw} \setlength{\textheight}{217mm} %=========================================================== \usepackage[dvipdfm]{graphicx,color} %\usepackage{wallpaper} \usepackage{wrapfig} \usepackage{amsmath,amsthm,amssymb} \usepackage{multicol} \usepackage{longtable} \usepackage{ascmac} \usepackage{fancybox} \usepackage{framed} \usepackage{ifthen} \usepackage{setspace} % setspaceパッケージのインクルード \usepackage{amssymb}% ≒を表示するために必要 % \usepackage{comment}% コメント% mebio.styと競合する \usepackage{booktabs} \usepackage{ascmac} \usepackage{itembbox} % % \usepackage{ custom_suseum}% すうじあむ %========================================================= %============================================================ % ■ 分数の横棒を長く,分数を立てに狭く(emath.styの古い記述) %------------------------------------------------------------ % 分数記号(分数罫を少し長めに) \newcommand{\bunsuu}[2]{\dfrac{\,#1\,}{\,#2\,}}% % さらに罫線の上下を狭く. \newcommand\Dfrac[2]{\bunsuu{\lower.6ex\hbox{$#1$}}{\lower-.3ex\hbox{$#2$}}}% %============================================================ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % enumerate の自動ラベルの変更 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\labelenumi{(\theenumi)} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 増減表の矢印 % http://www.biwako.shiga-u.ac.jp/sensei/kumazawa/tex/arrow.html % % $\cvinc$ increase % $\ccinc$ concavity 凹状の % $\cvdec$ convex 凸形の % $\ccdec$ decrease % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \makeatletter \newcommand{\ccinc}{\ifx\@currsize\small \setlength{\unitlength}{1.1pt} \begin{picture}(10,10)(1,2) \put(1,2){\line(0,1){3}} \put(5,5){\oval(8,8)[lt]} \put(5,9){\vector(1,0){4}} \end{picture}\else \setlength{\unitlength}{1.2pt} \begin{picture}(10,10)(1,2) \put(1,2){\line(0,1){3}} \put(5,5){\oval(8,8)[lt]} \put(5,9){\vector(1,0){4}} \end{picture}\fi} \newcommand{\cvinc}{\ifx\@currsize\small \setlength{\unitlength}{1.1pt} \begin{picture}(10,10)(2,1) \put(2,1){\line(1,0){3}} \put(5,5){\oval(8,8)[rb]} \put(9,5){\vector(0,1){4}} \end{picture}\else \setlength{\unitlength}{1.2pt} \begin{picture}(10,10)(2,1) \put(2,1){\line(1,0){3}} \put(5,5){\oval(8,8)[rb]} \put(9,5){\vector(0,1){4}} \end{picture}\fi} \newcommand{\ccdec}{\ifx\@currsize\small \setlength{\unitlength}{1.1pt} \begin{picture}(10,10)(2,1) \put(2,9){\line(1,0){3}} \put(5,5){\oval(8,8)[rt]} \put(9,5){\vector(0,-1){4}} \end{picture}\else \setlength{\unitlength}{1.2pt} \begin{picture}(10,10)(2,1) \put(2,9){\line(1,0){3}} \put(5,5){\oval(8,8)[rt]} \put(9,5){\vector(0,-1){4}} \end{picture}\fi} \newcommand{\cvdec}{\ifx\@currsize\small \setlength{\unitlength}{1.1pt} \begin{picture}(10,10)(1,0) \put(1,8){\line(0,-1){3}} \put(5,5){\oval(8,8)[lb]} \put(5,1){\vector(1,0){4}} \end{picture}\else \setlength{\unitlength}{1.2pt} \begin{picture}(10,10)(1,0) \put(1,8){\line(0,-1){3}} \put(5,5){\oval(8,8)[lb]} \put(5,1){\vector(1,0){4}} \end{picture}\fi} \makeatother %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %====================================================================== \newcommand{\解説印}{\fboxsep=1.3pt\noindent\ovalbox{\bf \,解\,説\,}\hspace{0.5em}} % \newcommand{\解答印}{\fboxsep=1.3pt\noindent\fbox{\bf \,解\,答\,}\hspace{0.5em}} \newcommand{\解答印}{\shadowsize=0.15\shadowsize{\fboxsep=1.3pt\noindent\shadowbox{\bf \,解\,答\,}\hspace{0.5em}}} \newcommand{\別解印}{\fboxsep=1.3pt\noindent\fbox{\bf \,別\,解\,}\hspace{0.5em}} \newcommand{\注意印}{\noindent{\bf [注意]}\hspace{0.5em}} %====================================================================== %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %■ベクトルの矢印の高さを揃える定義 % \overrightarrow の矢印の高さを揃える % \vec, \Vec で定義する %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\vec#1{\overrightarrow{\mathstrut #1}} \def\Vec#1{\overrightarrow{\mathstrut {\rm #1}}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %=========================================================== % ■二重根号 %----------------------------------------------------------- \def\tsqrt#1{\textstyle\sqrt{#1}} %=========================================================== %%% 平行 // の記号%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\para{% \setlength{\unitlength}{1pt}% \thinlines % \begin{picture}(10, 12)% \put(1,0){/}% \put(4,0){/}% \end{picture}% }% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %■ 答えを太文字 \newcommand{\kotae}[1]{\mbox{\boldmath$#1$}} % \def\kotae#1{\mbox{\boldmath $#1$}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %=========================================================== % ■枠囲み %----------------------------------------------------------- \newcommand{\枠囲}[1]{\,\fboxsep1pt\fbox{ #1 }\,}% 文章中でも数式中でも使える? % \newcommand{\枠}[1]{\fboxsep1pt\fbox{ #1 }\,} %=========================================================== %=========================================================== % ■≦と≧の定義 %----------------------------------------------------------- \def\le{\leqq} \def\ge{\geqq} \newcommand{\LEQQ}{\leqq} \newcommand{\GEQQ}{\geqq} % \newcommand{\LEQQ}{\mathrel{\mathpalette\gl@align<}} % \newcommand{\GEQQ}{\mathrel{\mathpalette\gl@align>}} % \newcommand{\gl@align}[2]{\lower.6ex\vbox{\baselineskip\z@skip\lineskip\z@ % \ialign{$\m@th#1\hfil##\hfil$\crcr#2\crcr=\crcr}}} % エラーになる。理由はよく解らん。 %=========================================================== %=========================================================== % ■行列 2×2 %----------------------------------------------------------- \newcommand{\matrixTT}[4]{ \begin{pmatrix} #1 & #2 \\ #3 & #4 \end{pmatrix} } %=========================================================== %=========================================================== % ■行列 3×3 %----------------------------------------------------------- \newcommand{\matrixTTT}[9]{ \begin{pmatrix} #1 & #2 & #3\\ #4 & #5 & #6\\ #7 & #8 & #9 \end{pmatrix} } %=========================================================== %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ■ 3*1行列の定義 \newcommand{\matrixthreeone}[3]{ \left(\begin{array}{c} #1\\ #2\\ #3 \end{array}\right) } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %=========================================================== % ■△ABCとか % % 「$\∠{ABC}=\Dfrac12\pi$」のような使い方をするので「$」は定義に含めない % %----------------------------------------------------------- \def\△#1{\triangle{\rm #1}} \def\∠#1{\angle{\rm #1}} %=========================================================== %=========================================================== % ■角括弧 複数行 #1 は横幅%,#2は内容 % %----------------------------------------------------------- \newcommand{\角括弧}[2]{% $% \left[ \begin{tabular}{@{}p{.#1\linewidth}}#2\end{tabular} \right]% $% } %=========================================================== %=========================================================== % ■丸括弧 複数行 #1 は横幅%,#2は内容 %----------------------------------------------------------- \newcommand{\丸括弧}[2]{% $% \left( \begin{tabular}{@{}p{.#1\linewidth}}#2\end{tabular} \right)% $% } %=========================================================== %=========================================================== % ■丸囲み数字 ①とか %----------------------------------------------------------- \newcommand{\tyoMaru}[1]{\mbox{{\normalsize \textcircled{\raisebox{-.25ex}{#1}}}}} %=========================================================== %=========================================================== % ■ 微分 df/dt %----------------------------------------------------------- \newcommand{\dd}[2]{% \dfrac{{\rm d}#1}{{\rm d}#2}% } %=========================================================== %=========================================================== % ■ ∫記号のdisplaystyleマクロ %----------------------------------------------------------- % \newcommand{\dint}{\displaystyle\int}% emathと干渉しないように\defで定義 \def\dint{\displaystyle\int} %=========================================================== %=========================================================== % ■ Σ記号のdisplaystyleマクロ %----------------------------------------------------------- \newcommand{\dsum}{\displaystyle\sum} %=========================================================== %=========================================================== % ■ lim記号のdisplaystyleマクロ %----------------------------------------------------------- \newcommand{\dlim}{\displaystyle\lim} \newcommand{\Dsum}{\sum\limits}% ちっさいΣ %=========================================================== %=========================================================== % ■ nCr マクロ %----------------------------------------------------------- \newcommand{\nCr}[2]{% {}_{#1}\mathrm{C}_{#2}% } %=========================================================== %=========================================================== % ■ローマ数字 (i) (ii) (iii) (iv) (v) (vi) (vii) まで定義 %----------------------------------------------------------- \providecommand{\RMi}{\mbox{(\hspace{.1em}i\hspace{.1em})}} \providecommand{\RMii}{\mbox{(ii)}} \providecommand{\RMiii}{\mbox{(i\hspace{-.1em}i\hspace{-.1em}i)}} \providecommand{\RMiv}{\mbox{(i\hspace{-.1em}v)}} \providecommand{\RMv}{\mbox{(\hspace{.1em}v\hspace{.1em})}} \providecommand{\RMvi}{\mbox{(v\hspace{-.1em}i)}} \providecommand{\RMvii}{\mbox{(\hspace{-.1em}v\hspace{-.1em}i\hspace{-.1em}i)}} %=========================================================== %=========================================================== % ■点A(t, t^3)とか % #1 は点の名前(「A」とか) % #2 は「(t,\,t^3)」とか「(s,\,t,\,u)」と( )内を全部書く % ()の大きさとか,の後のスペースとか微調整ができるように % %----------------------------------------------------------- \providecommand{\点}[2]{${\rm#1} #2$} %=========================================================== %=========================================================== % ■ 証明終了記号 ■ %----------------------------------------------------------- \newcommand{\■}{{\tiny \text{■}}} %=========================================================== \begin{document} %%%%% ■ 本文開始 ■ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\begin{FRAME}% この間に設問を書く% \usepackage{ custom_suseum} をゆうこうにすること \begin{framed} % %---------------------------------------------------------------- % \begin{enumerate} \item $y=e^{-x}\sin{x}\ (0\LEQQ x \LEQQ \pi)$のグラフを, 下図の$xy$平面に書き入れよ. \begin{center} %WinTpicVersion4.28b {\unitlength 0.1in \begin{picture}( 39.0000, 16.8000)( 4.1000,-20.8000) % STR 2 0 3 0 Black White % 4 695 1836 695 1852 4 0 0 0 % $0$ \put(6.9500,-18.5200){\makebox(0,0)[rt]{$0$}}% % STR 2 0 3 0 Black White % 4 650 384 650 400 4 2800 0 0 % $y$ \put(6.5000,-4.0000){\makebox(0,0)[rt]{$y$}}% % STR 2 0 3 0 Black White % 4 4310 1872 4310 1888 4 2800 0 0 % $x$ \put(43.1000,-18.8800){\makebox(0,0)[rt]{$x$}}% % VECTOR 2 0 3 0 Black White % 2 710 1840 710 400 % \special{pn 8}% \special{pa 710 1840}% \special{pa 710 400}% \special{fp}% \special{sh 1}% \special{pa 710 400}% \special{pa 690 468}% \special{pa 710 454}% \special{pa 730 468}% \special{pa 710 400}% \special{fp}% % VECTOR 2 0 3 0 Black White % 2 710 1840 4310 1840 % \special{pn 8}% \special{pa 710 1840}% \special{pa 4310 1840}% \special{fp}% \special{sh 1}% \special{pa 4310 1840}% \special{pa 4244 1820}% \special{pa 4258 1840}% \special{pa 4244 1860}% \special{pa 4310 1840}% \special{fp}% % FUNC 2 0 3 0 Black White % 10 410 400 4310 2080 710 1840 4010 1840 710 640 710 400 4010 2080 0 4 1 0 1 0 % exp(-x) \special{pn 8}% \special{pn 8}% \special{pa 518 400}% \special{pa 520 403}% \special{pa 523 407}% \special{ip}% \special{pa 549 441}% \special{pa 550 443}% \special{pa 554 448}% \special{ip}% \special{pa 580 482}% \special{pa 580 482}% \special{pa 586 489}% \special{ip}% \special{pa 612 522}% \special{pa 616 527}% \special{pa 617 529}% \special{ip}% \special{pa 644 562}% \special{pa 650 569}% \special{ip}% \special{pa 677 601}% \special{pa 683 608}% \special{ip}% \special{pa 710 640}% \special{pa 716 646}% \special{pa 720 652}% \special{pa 730 663}% \special{pa 736 669}% \special{pa 740 674}% \special{pa 746 680}% \special{pa 750 685}% \special{pa 756 691}% \special{pa 760 696}% \special{pa 766 702}% \special{pa 770 707}% \special{pa 780 718}% \special{pa 786 723}% \special{pa 796 734}% \special{pa 800 739}% \special{pa 826 765}% \special{pa 830 770}% \special{pa 870 810}% \special{pa 876 815}% \special{pa 900 839}% \special{pa 906 844}% \special{pa 916 853}% \special{pa 920 858}% \special{pa 930 867}% \special{pa 936 872}% \special{pa 946 881}% \special{pa 950 886}% \special{pa 956 890}% \special{pa 960 895}% \special{pa 966 899}% \special{pa 970 904}% \special{pa 976 908}% \special{pa 986 917}% \special{pa 990 921}% \special{pa 1000 930}% \special{pa 1006 934}% \special{pa 1016 943}% \special{pa 1020 947}% \special{pa 1036 960}% \special{pa 1040 964}% \special{pa 1126 1032}% \special{pa 1130 1036}% \special{pa 1150 1051}% \special{pa 1156 1055}% \special{pa 1170 1066}% \special{pa 1176 1070}% \special{pa 1186 1077}% \special{pa 1190 1081}% \special{pa 1196 1084}% \special{pa 1200 1088}% \special{pa 1206 1091}% \special{pa 1210 1095}% \special{pa 1220 1102}% \special{pa 1226 1106}% \special{pa 1230 1109}% \special{pa 1240 1116}% \special{pa 1246 1119}% \special{pa 1250 1123}% \special{pa 1256 1126}% \special{pa 1260 1130}% \special{pa 1266 1133}% \special{pa 1276 1140}% \special{pa 1280 1143}% \special{pa 1296 1153}% \special{pa 1300 1156}% \special{pa 1316 1166}% \special{pa 1320 1169}% \special{pa 1346 1185}% \special{pa 1350 1188}% \special{pa 1420 1230}% \special{pa 1426 1233}% \special{pa 1456 1250}% \special{pa 1460 1253}% \special{pa 1476 1261}% \special{pa 1480 1264}% \special{pa 1496 1272}% \special{pa 1500 1275}% \special{pa 1526 1288}% \special{pa 1530 1291}% \special{pa 1536 1293}% \special{pa 1540 1296}% \special{pa 1620 1336}% \special{pa 1626 1338}% \special{pa 1630 1341}% \special{pa 1636 1343}% \special{pa 1660 1355}% \special{pa 1666 1357}% \special{pa 1680 1364}% \special{pa 1686 1366}% \special{pa 1700 1373}% \special{pa 1706 1375}% \special{pa 1726 1384}% \special{pa 1730 1386}% \special{pa 1766 1401}% \special{pa 1770 1403}% \special{pa 1856 1437}% \special{pa 1860 1439}% \special{pa 1896 1452}% \special{pa 1900 1454}% \special{pa 1926 1463}% \special{pa 1930 1465}% \special{pa 1946 1470}% \special{pa 1950 1472}% \special{pa 1966 1477}% \special{pa 1970 1479}% \special{pa 1986 1484}% \special{pa 1990 1486}% \special{pa 2000 1489}% \special{pa 2006 1491}% \special{pa 2016 1494}% \special{pa 2020 1496}% \special{pa 2026 1497}% \special{pa 2030 1499}% \special{pa 2040 1502}% \special{pa 2046 1504}% \special{pa 2056 1507}% \special{pa 2060 1509}% \special{pa 2066 1510}% \special{pa 2070 1512}% \special{pa 2076 1513}% \special{pa 2080 1515}% \special{pa 2086 1516}% \special{pa 2090 1518}% \special{pa 2096 1519}% \special{pa 2100 1521}% \special{pa 2110 1524}% \special{pa 2116 1526}% \special{pa 2120 1527}% \special{pa 2130 1530}% \special{pa 2136 1531}% \special{pa 2140 1533}% \special{pa 2146 1534}% \special{pa 2150 1536}% \special{pa 2156 1537}% \special{pa 2160 1539}% \special{pa 2166 1540}% \special{pa 2170 1542}% \special{pa 2176 1543}% \special{pa 2186 1546}% \special{pa 2190 1547}% \special{pa 2196 1549}% \special{pa 2200 1550}% \special{pa 2210 1553}% \special{pa 2216 1554}% \special{pa 2226 1557}% \special{pa 2230 1558}% \special{pa 2240 1561}% \special{pa 2246 1562}% \special{pa 2256 1565}% \special{pa 2260 1566}% \special{pa 2270 1569}% \special{pa 2276 1570}% \special{pa 2290 1574}% \special{pa 2296 1575}% \special{pa 2310 1579}% \special{pa 2316 1580}% \special{pa 2330 1584}% \special{pa 2336 1585}% \special{pa 2360 1591}% \special{pa 2386 1597}% \special{pa 2390 1598}% \special{pa 2420 1605}% \special{pa 2426 1606}% \special{pa 2480 1618}% \special{pa 2486 1619}% \special{pa 2596 1641}% \special{pa 2600 1642}% \special{pa 2660 1653}% \special{pa 2666 1654}% \special{pa 2700 1660}% \special{pa 2766 1671}% \special{pa 2786 1674}% \special{pa 2790 1675}% \special{pa 2806 1677}% \special{pa 2810 1678}% \special{pa 2830 1681}% \special{pa 2836 1682}% \special{pa 2850 1684}% \special{pa 2856 1685}% \special{pa 2866 1686}% \special{pa 2870 1687}% \special{pa 2886 1689}% \special{pa 2890 1690}% \special{pa 2906 1692}% \special{pa 2910 1693}% \special{pa 2920 1694}% \special{pa 2926 1695}% \special{pa 2936 1696}% \special{pa 2940 1697}% \special{pa 2950 1698}% \special{pa 2956 1699}% \special{pa 2966 1700}% \special{pa 2970 1701}% \special{pa 2980 1702}% \special{pa 2986 1703}% \special{pa 2996 1704}% \special{pa 3000 1705}% \special{pa 3010 1706}% \special{pa 3016 1707}% \special{pa 3026 1708}% \special{pa 3030 1709}% \special{pa 3036 1709}% \special{pa 3040 1710}% \special{pa 3050 1711}% \special{pa 3056 1712}% \special{pa 3060 1712}% \special{pa 3066 1713}% \special{pa 3076 1714}% \special{pa 3080 1715}% \special{pa 3086 1715}% \special{pa 3090 1716}% \special{pa 3100 1717}% \special{pa 3106 1718}% \special{pa 3110 1718}% \special{pa 3116 1719}% \special{pa 3126 1720}% \special{pa 3130 1721}% \special{pa 3136 1721}% \special{pa 3140 1722}% \special{pa 3146 1722}% \special{pa 3150 1723}% \special{pa 3160 1724}% \special{pa 3166 1725}% \special{pa 3170 1725}% \special{pa 3176 1726}% \special{pa 3180 1726}% \special{pa 3186 1727}% \special{pa 3190 1727}% \special{pa 3196 1728}% \special{pa 3200 1728}% \special{pa 3206 1729}% \special{pa 3210 1729}% \special{pa 3216 1730}% \special{pa 3226 1731}% \special{pa 3230 1732}% \special{pa 3236 1732}% \special{pa 3240 1733}% \special{pa 3246 1733}% \special{pa 3250 1734}% \special{pa 3256 1734}% \special{pa 3260 1735}% \special{pa 3266 1735}% \special{pa 3270 1736}% \special{pa 3276 1736}% \special{pa 3280 1737}% \special{pa 3286 1737}% \special{pa 3290 1738}% \special{pa 3296 1738}% \special{pa 3300 1739}% \special{pa 3306 1739}% \special{pa 3310 1740}% \special{pa 3316 1740}% \special{pa 3326 1741}% \special{pa 3330 1741}% \special{pa 3336 1742}% \special{pa 3340 1742}% \special{pa 3346 1743}% \special{pa 3350 1743}% \special{pa 3356 1744}% \special{pa 3360 1744}% \special{pa 3366 1745}% \special{pa 3370 1745}% \special{pa 3376 1746}% \special{pa 3380 1746}% \special{pa 3390 1747}% \special{pa 3396 1747}% \special{pa 3400 1748}% \special{pa 3406 1748}% \special{pa 3410 1749}% \special{pa 3416 1749}% \special{pa 3426 1750}% \special{pa 3430 1750}% \special{pa 3436 1751}% \special{pa 3440 1751}% \special{pa 3446 1752}% \special{pa 3450 1752}% \special{pa 3460 1753}% \special{pa 3466 1753}% \special{pa 3470 1754}% \special{pa 3476 1754}% \special{pa 3480 1755}% \special{pa 3486 1755}% \special{pa 3496 1756}% \special{pa 3500 1756}% \special{pa 3506 1757}% \special{pa 3510 1757}% \special{pa 3520 1758}% \special{pa 3526 1758}% \special{pa 3536 1759}% \special{pa 3540 1759}% \special{pa 3546 1760}% \special{pa 3550 1760}% \special{pa 3560 1761}% \special{pa 3566 1761}% \special{pa 3570 1762}% \special{pa 3576 1762}% \special{pa 3586 1763}% \special{pa 3590 1763}% \special{pa 3600 1764}% \special{pa 3606 1764}% \special{pa 3616 1765}% \special{pa 3620 1765}% \special{pa 3626 1766}% \special{pa 3630 1766}% \special{pa 3640 1767}% \special{pa 3646 1767}% \special{pa 3656 1768}% \special{pa 3660 1768}% \special{pa 3670 1769}% \special{pa 3676 1769}% \special{pa 3686 1770}% \special{pa 3690 1770}% \special{pa 3700 1771}% \special{pa 3706 1771}% \special{pa 3716 1772}% \special{pa 3720 1772}% \special{pa 3730 1773}% \special{pa 3736 1773}% \special{pa 3746 1774}% \special{pa 3750 1774}% \special{pa 3760 1775}% \special{pa 3766 1775}% \special{pa 3780 1776}% \special{pa 3786 1776}% \special{pa 3796 1777}% \special{pa 3800 1777}% \special{pa 3810 1778}% \special{pa 3816 1778}% \special{pa 3830 1779}% \special{pa 3836 1779}% \special{pa 3846 1780}% \special{pa 3850 1780}% \special{pa 3866 1781}% \special{pa 3870 1781}% \special{pa 3880 1782}% \special{pa 3886 1782}% \special{pa 3900 1783}% \special{pa 3906 1783}% \special{pa 3916 1784}% \special{pa 3920 1784}% \special{pa 3936 1785}% \special{pa 3940 1785}% \special{pa 3956 1786}% \special{pa 3960 1786}% \special{pa 3976 1787}% \special{pa 3980 1787}% \special{pa 3996 1788}% \special{pa 4000 1788}% \special{pa 4010 1789}% \special{fp}% \special{pn 8}% \special{pa 4019 1789}% \special{pa 4020 1789}% \special{pa 4036 1790}% \special{pa 4040 1790}% \special{pa 4056 1791}% \special{pa 4060 1791}% \special{pa 4060 1791}% \special{ip}% \special{pa 4069 1791}% \special{pa 4080 1792}% \special{pa 4086 1792}% \special{pa 4100 1793}% \special{pa 4106 1793}% \special{pa 4110 1793}% \special{ip}% \special{pa 4119 1794}% \special{pa 4120 1794}% \special{pa 4126 1794}% \special{pa 4146 1795}% \special{pa 4150 1795}% \special{pa 4160 1795}% \special{ip}% \special{pa 4169 1796}% \special{pa 4170 1796}% \special{pa 4176 1796}% \special{pa 4190 1797}% \special{pa 4196 1797}% \special{pa 4210 1798}% \special{ip}% \special{pa 4219 1798}% \special{pa 4220 1798}% \special{pa 4240 1799}% \special{pa 4246 1799}% \special{pa 4260 1800}% \special{ip}% \special{pa 4269 1800}% \special{pa 4270 1800}% \special{pa 4296 1801}% \special{pa 4300 1801}% \special{pa 4310 1802}% \special{ip}% % FUNC 2 0 3 0 Black White % 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1 % pi \special{pn 8}% \special{pn 8}% \special{pa 4010 400}% \special{pa 4010 409}% \special{ip}% \special{pa 4010 448}% \special{pa 4010 457}% \special{ip}% \special{pa 4010 496}% \special{pa 4010 505}% \special{ip}% \special{pa 4010 544}% \special{pa 4010 553}% \special{ip}% \special{pa 4010 592}% \special{pa 4010 601}% \special{ip}% \special{ip}% \special{pa 4010 640}% \special{pa 4010 1840}% \special{fp}% \special{pn 8}% \special{pa 4010 1849}% \special{pa 4010 1888}% \special{ip}% \special{pa 4010 1897}% \special{pa 4010 1936}% \special{ip}% \special{pa 4010 1945}% \special{pa 4010 1984}% \special{ip}% \special{pa 4010 1993}% \special{pa 4010 2032}% \special{ip}% \special{pa 4010 2041}% \special{pa 4010 2080}% \special{ip}% % FUNC 2 0 3 0 Black White % 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1 % pi/2 \special{pn 8}% \special{pn 8}% \special{pa 2360 400}% \special{pa 2360 409}% \special{ip}% \special{pa 2360 448}% \special{pa 2360 457}% \special{ip}% \special{pa 2360 496}% \special{pa 2360 505}% \special{ip}% \special{pa 2360 544}% \special{pa 2360 553}% \special{ip}% \special{pa 2360 592}% \special{pa 2360 601}% \special{ip}% \special{ip}% \special{pa 2360 640}% \special{pa 2360 1840}% \special{fp}% \special{pn 8}% \special{pa 2360 1849}% \special{pa 2360 1888}% \special{ip}% \special{pa 2360 1897}% \special{pa 2360 1936}% \special{ip}% \special{pa 2360 1945}% \special{pa 2360 1984}% \special{ip}% \special{pa 2360 1993}% \special{pa 2360 2032}% \special{ip}% \special{pa 2360 2041}% \special{pa 2360 2080}% \special{ip}% % FUNC 2 0 3 0 Black White % 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1 % pi/4 \special{pn 8}% \special{pn 8}% \special{pa 1536 400}% \special{pa 1536 409}% \special{ip}% \special{pa 1536 448}% \special{pa 1536 457}% \special{ip}% \special{pa 1536 496}% \special{pa 1536 505}% \special{ip}% \special{pa 1536 544}% \special{pa 1536 553}% \special{ip}% \special{pa 1536 592}% \special{pa 1536 601}% \special{ip}% \special{ip}% \special{pa 1536 640}% \special{pa 1536 1840}% \special{fp}% \special{pn 8}% \special{pa 1536 1849}% \special{pa 1536 1888}% \special{ip}% \special{pa 1536 1897}% \special{pa 1536 1936}% \special{ip}% \special{pa 1536 1945}% \special{pa 1536 1984}% \special{ip}% \special{pa 1536 1993}% \special{pa 1536 2032}% \special{ip}% \special{pa 1536 2041}% \special{pa 1536 2080}% \special{ip}% % FUNC 2 0 3 0 Black White % 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1 % pi/4*3 \special{pn 8}% \special{pn 8}% \special{pa 3185 400}% \special{pa 3185 409}% \special{ip}% \special{pa 3185 448}% \special{pa 3185 457}% \special{ip}% \special{pa 3185 496}% \special{pa 3185 505}% \special{ip}% \special{pa 3185 544}% \special{pa 3185 553}% \special{ip}% \special{pa 3185 592}% \special{pa 3185 601}% \special{ip}% \special{ip}% \special{pa 3185 640}% \special{pa 3185 1840}% \special{fp}% \special{pn 8}% \special{pa 3185 1849}% \special{pa 3185 1888}% \special{ip}% \special{pa 3185 1897}% \special{pa 3185 1936}% \special{ip}% \special{pa 3185 1945}% \special{pa 3185 1984}% \special{ip}% \special{pa 3185 1993}% \special{pa 3185 2032}% \special{ip}% \special{pa 3185 2041}% \special{pa 3185 2080}% \special{ip}% % FUNC 2 0 3 0 Black White % 10 410 400 4310 2080 710 1840 4010 1840 710 640 710 400 4010 2080 0 4 1 0 0 0 % 1 \special{pn 8}% \special{pn 8}% \special{pa 410 640}% \special{pa 419 640}% \special{ip}% \special{pa 460 640}% \special{pa 469 640}% \special{ip}% \special{pa 510 640}% \special{pa 519 640}% \special{ip}% \special{pa 560 640}% \special{pa 569 640}% \special{ip}% \special{pa 610 640}% \special{pa 619 640}% \special{ip}% \special{pa 660 640}% \special{pa 669 640}% \special{ip}% \special{pa 710 640}% \special{pa 710 640}% \special{ip}% \special{pa 710 640}% \special{pa 4010 640}% \special{fp}% \special{pn 8}% \special{pa 4019 640}% \special{pa 4060 640}% \special{ip}% \special{pa 4069 640}% \special{pa 4110 640}% \special{ip}% \special{pa 4119 640}% \special{pa 4160 640}% \special{ip}% \special{pa 4169 640}% \special{pa 4210 640}% \special{ip}% \special{pa 4219 640}% \special{pa 4260 640}% \special{ip}% \special{pa 4269 640}% \special{pa 4310 640}% \special{ip}% % STR 2 0 3 0 Black White % 4 1450 2020 1450 2120 2 0 0 0 % $\Dfrac14\pi$ \put(14.5000,-21.2000){\makebox(0,0)[lb]{$\Dfrac14\pi$}}% % STR 2 0 3 0 Black White % 4 2320 2020 2320 2120 2 0 0 0 % $\Dfrac12\pi$ \put(23.2000,-21.2000){\makebox(0,0)[lb]{$\Dfrac12\pi$}}% % STR 2 0 3 0 Black White % 4 3100 2010 3100 2110 2 0 0 0 % $\Dfrac34\pi$ \put(31.0000,-21.1000){\makebox(0,0)[lb]{$\Dfrac34\pi$}}% % STR 2 0 3 0 Black White % 4 3940 1920 3940 2020 2 0 0 0 % $\pi$ \put(39.4000,-20.2000){\makebox(0,0)[lb]{$\pi$}}% \end{picture}}% \end{center} ただし,図の曲線は$y=e^{-x}\ (0\LEQQ x \LEQQ \pi)$である. \item 正の整数$n$について, \[I_n=\dint_0^{n\pi}e^{-x}|\sin{x}|dx\] とする.このとき,極限値$\dlim_{n\to\infty}I_n$を求めよ. \end{enumerate} %-------------------------------------------------------------- \end{framed} %\end{FRAME} %--- 解答 ------------------------------------------------------------------------ {\footnotesize }% footnotesize %%%%%%% ■ 本文終了 ■ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document}