この問題には解答がありません。作成中ですのでしばらくお待ちください。
入試情報
大学名 |
京都府立医科大学 |
学科・方式 |
前期 |
年度 |
1993年度 |
問No |
問4 |
学部 |
医学部
|
カテゴリ |
関数と極限 ・ 微分法 ・ 積分法
|
状態 |
 |
%
% すうじあむはアップするファイルで完結したTeXソースでないといけない.
% このひな形で表示確認をしよう.
%
\documentclass[b5paper,fleqn,papersize]{jsarticle}
%===========================================================
% ■余白の設定 B5
%-----------------------------------------------------------
\setlength{\oddsidemargin}{-5.4truemm} % 左マージン
\setlength{\topmargin}{-15.4truemm} % 上マージン
\setlength{\textwidth}{14.2cm} % B5 サイズ用
\setlength{\headheight}{2zw}
\setlength{\headsep}{2zw}
\setlength{\textheight}{217mm}
%===========================================================
\usepackage[dvipdfm]{graphicx,color}
%\usepackage{wallpaper}
\usepackage{wrapfig}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{multicol}
\usepackage{longtable}
\usepackage{ascmac}
\usepackage{fancybox}
\usepackage{framed}
\usepackage{ifthen}
\usepackage{setspace} % setspaceパッケージのインクルード
\usepackage{amssymb}% ≒を表示するために必要
% \usepackage{comment}% コメント% mebio.styと競合する
\usepackage{booktabs}
\usepackage{ascmac}
\usepackage{itembbox}
%
% \usepackage{ custom_suseum}% すうじあむ
%=========================================================
%============================================================
% ■ 分数の横棒を長く,分数を立てに狭く(emath.styの古い記述)
%------------------------------------------------------------
% 分数記号(分数罫を少し長めに)
\newcommand{\bunsuu}[2]{\dfrac{\,#1\,}{\,#2\,}}%
% さらに罫線の上下を狭く.
\newcommand\Dfrac[2]{\bunsuu{\lower.6ex\hbox{$#1$}}{\lower-.3ex\hbox{$#2$}}}%
%============================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% enumerate の自動ラベルの変更
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\labelenumi{(\theenumi)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 増減表の矢印
% http://www.biwako.shiga-u.ac.jp/sensei/kumazawa/tex/arrow.html
%
% $\cvinc$ increase
% $\ccinc$ concavity 凹状の
% $\cvdec$ convex 凸形の
% $\ccdec$ decrease
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\makeatletter
\newcommand{\ccinc}{\ifx\@currsize\small
\setlength{\unitlength}{1.1pt}
\begin{picture}(10,10)(1,2)
\put(1,2){\line(0,1){3}}
\put(5,5){\oval(8,8)[lt]}
\put(5,9){\vector(1,0){4}}
\end{picture}\else
\setlength{\unitlength}{1.2pt}
\begin{picture}(10,10)(1,2)
\put(1,2){\line(0,1){3}}
\put(5,5){\oval(8,8)[lt]}
\put(5,9){\vector(1,0){4}}
\end{picture}\fi}
\newcommand{\cvinc}{\ifx\@currsize\small
\setlength{\unitlength}{1.1pt}
\begin{picture}(10,10)(2,1)
\put(2,1){\line(1,0){3}}
\put(5,5){\oval(8,8)[rb]}
\put(9,5){\vector(0,1){4}}
\end{picture}\else
\setlength{\unitlength}{1.2pt}
\begin{picture}(10,10)(2,1)
\put(2,1){\line(1,0){3}}
\put(5,5){\oval(8,8)[rb]}
\put(9,5){\vector(0,1){4}}
\end{picture}\fi}
\newcommand{\ccdec}{\ifx\@currsize\small
\setlength{\unitlength}{1.1pt}
\begin{picture}(10,10)(2,1)
\put(2,9){\line(1,0){3}}
\put(5,5){\oval(8,8)[rt]}
\put(9,5){\vector(0,-1){4}}
\end{picture}\else
\setlength{\unitlength}{1.2pt}
\begin{picture}(10,10)(2,1)
\put(2,9){\line(1,0){3}}
\put(5,5){\oval(8,8)[rt]}
\put(9,5){\vector(0,-1){4}}
\end{picture}\fi}
\newcommand{\cvdec}{\ifx\@currsize\small
\setlength{\unitlength}{1.1pt}
\begin{picture}(10,10)(1,0)
\put(1,8){\line(0,-1){3}}
\put(5,5){\oval(8,8)[lb]}
\put(5,1){\vector(1,0){4}}
\end{picture}\else
\setlength{\unitlength}{1.2pt}
\begin{picture}(10,10)(1,0)
\put(1,8){\line(0,-1){3}}
\put(5,5){\oval(8,8)[lb]}
\put(5,1){\vector(1,0){4}}
\end{picture}\fi}
\makeatother
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%======================================================================
\newcommand{\解説印}{\fboxsep=1.3pt\noindent\ovalbox{\bf \,解\,説\,}\hspace{0.5em}}
% \newcommand{\解答印}{\fboxsep=1.3pt\noindent\fbox{\bf \,解\,答\,}\hspace{0.5em}}
\newcommand{\解答印}{\shadowsize=0.15\shadowsize{\fboxsep=1.3pt\noindent\shadowbox{\bf \,解\,答\,}\hspace{0.5em}}}
\newcommand{\別解印}{\fboxsep=1.3pt\noindent\fbox{\bf \,別\,解\,}\hspace{0.5em}}
\newcommand{\注意印}{\noindent{\bf [注意]}\hspace{0.5em}}
%======================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%■ベクトルの矢印の高さを揃える定義
% \overrightarrow の矢印の高さを揃える
% \vec, \Vec で定義する
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\vec#1{\overrightarrow{\mathstrut #1}}
\def\Vec#1{\overrightarrow{\mathstrut {\rm #1}}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%===========================================================
% ■二重根号
%-----------------------------------------------------------
\def\tsqrt#1{\textstyle\sqrt{#1}}
%===========================================================
%%% 平行 // の記号%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\def\para{%
\setlength{\unitlength}{1pt}%
\thinlines %
\begin{picture}(10, 12)%
\put(1,0){/}%
\put(4,0){/}%
\end{picture}%
}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%■ 答えを太文字
\newcommand{\kotae}[1]{\mbox{\boldmath$#1$}}
% \def\kotae#1{\mbox{\boldmath $#1$}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%===========================================================
% ■枠囲み
%-----------------------------------------------------------
\newcommand{\枠囲}[1]{\,\fboxsep1pt\fbox{ #1 }\,}% 文章中でも数式中でも使える?
% \newcommand{\枠}[1]{\fboxsep1pt\fbox{ #1 }\,}
%===========================================================
%===========================================================
% ■≦と≧の定義
%-----------------------------------------------------------
\def\le{\leqq}
\def\ge{\geqq}
\newcommand{\LEQQ}{\leqq}
\newcommand{\GEQQ}{\geqq}
% \newcommand{\LEQQ}{\mathrel{\mathpalette\gl@align<}}
% \newcommand{\GEQQ}{\mathrel{\mathpalette\gl@align>}}
% \newcommand{\gl@align}[2]{\lower.6ex\vbox{\baselineskip\z@skip\lineskip\z@
% \ialign{$\m@th#1\hfil##\hfil$\crcr#2\crcr=\crcr}}}
% エラーになる。理由はよく解らん。
%===========================================================
%===========================================================
% ■行列 2×2
%-----------------------------------------------------------
\newcommand{\matrixTT}[4]{
\begin{pmatrix}
#1 & #2 \\
#3 & #4
\end{pmatrix}
}
%===========================================================
%===========================================================
% ■行列 3×3
%-----------------------------------------------------------
\newcommand{\matrixTTT}[9]{
\begin{pmatrix}
#1 & #2 & #3\\
#4 & #5 & #6\\
#7 & #8 & #9
\end{pmatrix}
}
%===========================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ■ 3*1行列の定義
\newcommand{\matrixthreeone}[3]{
\left(\begin{array}{c}
#1\\
#2\\
#3
\end{array}\right)
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%===========================================================
% ■△ABCとか
%
% 「$\∠{ABC}=\Dfrac12\pi$」のような使い方をするので「$」は定義に含めない
%
%-----------------------------------------------------------
\def\△#1{\triangle{\rm #1}}
\def\∠#1{\angle{\rm #1}}
%===========================================================
%===========================================================
% ■角括弧 複数行 #1 は横幅%,#2は内容
%
%-----------------------------------------------------------
\newcommand{\角括弧}[2]{%
$%
\left[ \begin{tabular}{@{}p{.#1\linewidth}}#2\end{tabular} \right]%
$%
}
%===========================================================
%===========================================================
% ■丸括弧 複数行 #1 は横幅%,#2は内容
%-----------------------------------------------------------
\newcommand{\丸括弧}[2]{%
$%
\left( \begin{tabular}{@{}p{.#1\linewidth}}#2\end{tabular} \right)%
$%
}
%===========================================================
%===========================================================
% ■丸囲み数字 ①とか
%-----------------------------------------------------------
\newcommand{\tyoMaru}[1]{\mbox{{\normalsize \textcircled{\raisebox{-.25ex}{#1}}}}}
%===========================================================
%===========================================================
% ■ 微分 df/dt
%-----------------------------------------------------------
\newcommand{\dd}[2]{%
\dfrac{{\rm d}#1}{{\rm d}#2}%
}
%===========================================================
%===========================================================
% ■ ∫記号のdisplaystyleマクロ
%-----------------------------------------------------------
% \newcommand{\dint}{\displaystyle\int}% emathと干渉しないように\defで定義
\def\dint{\displaystyle\int}
%===========================================================
%===========================================================
% ■ Σ記号のdisplaystyleマクロ
%-----------------------------------------------------------
\newcommand{\dsum}{\displaystyle\sum}
%===========================================================
%===========================================================
% ■ lim記号のdisplaystyleマクロ
%-----------------------------------------------------------
\newcommand{\dlim}{\displaystyle\lim}
\newcommand{\Dsum}{\sum\limits}% ちっさいΣ
%===========================================================
%===========================================================
% ■ nCr マクロ
%-----------------------------------------------------------
\newcommand{\nCr}[2]{%
{}_{#1}\mathrm{C}_{#2}%
}
%===========================================================
%===========================================================
% ■ローマ数字 (i) (ii) (iii) (iv) (v) (vi) (vii) まで定義
%-----------------------------------------------------------
\providecommand{\RMi}{\mbox{(\hspace{.1em}i\hspace{.1em})}}
\providecommand{\RMii}{\mbox{(ii)}}
\providecommand{\RMiii}{\mbox{(i\hspace{-.1em}i\hspace{-.1em}i)}}
\providecommand{\RMiv}{\mbox{(i\hspace{-.1em}v)}}
\providecommand{\RMv}{\mbox{(\hspace{.1em}v\hspace{.1em})}}
\providecommand{\RMvi}{\mbox{(v\hspace{-.1em}i)}}
\providecommand{\RMvii}{\mbox{(\hspace{-.1em}v\hspace{-.1em}i\hspace{-.1em}i)}}
%===========================================================
%===========================================================
% ■点A(t, t^3)とか
% #1 は点の名前(「A」とか)
% #2 は「(t,\,t^3)」とか「(s,\,t,\,u)」と( )内を全部書く
% ()の大きさとか,の後のスペースとか微調整ができるように
%
%-----------------------------------------------------------
\providecommand{\点}[2]{${\rm#1} #2$}
%===========================================================
%===========================================================
% ■ 証明終了記号 ■
%-----------------------------------------------------------
\newcommand{\■}{{\tiny \text{■}}}
%===========================================================
\begin{document}
%%%%% ■ 本文開始 ■ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{FRAME}% この間に設問を書く% \usepackage{ custom_suseum} をゆうこうにすること
\begin{framed}
%
%----------------------------------------------------------------
%
\begin{enumerate}
\item $y=e^{-x}\sin{x}\ (0\LEQQ x \LEQQ \pi)$のグラフを,
下図の$xy$平面に書き入れよ.
\begin{center}
%WinTpicVersion4.28b
{\unitlength 0.1in
\begin{picture}( 39.0000, 16.8000)( 4.1000,-20.8000)
% STR 2 0 3 0 Black White
% 4 695 1836 695 1852 4 0 0 0
% $0$
\put(6.9500,-18.5200){\makebox(0,0)[rt]{$0$}}%
% STR 2 0 3 0 Black White
% 4 650 384 650 400 4 2800 0 0
% $y$
\put(6.5000,-4.0000){\makebox(0,0)[rt]{$y$}}%
% STR 2 0 3 0 Black White
% 4 4310 1872 4310 1888 4 2800 0 0
% $x$
\put(43.1000,-18.8800){\makebox(0,0)[rt]{$x$}}%
% VECTOR 2 0 3 0 Black White
% 2 710 1840 710 400
%
\special{pn 8}%
\special{pa 710 1840}%
\special{pa 710 400}%
\special{fp}%
\special{sh 1}%
\special{pa 710 400}%
\special{pa 690 468}%
\special{pa 710 454}%
\special{pa 730 468}%
\special{pa 710 400}%
\special{fp}%
% VECTOR 2 0 3 0 Black White
% 2 710 1840 4310 1840
%
\special{pn 8}%
\special{pa 710 1840}%
\special{pa 4310 1840}%
\special{fp}%
\special{sh 1}%
\special{pa 4310 1840}%
\special{pa 4244 1820}%
\special{pa 4258 1840}%
\special{pa 4244 1860}%
\special{pa 4310 1840}%
\special{fp}%
% FUNC 2 0 3 0 Black White
% 10 410 400 4310 2080 710 1840 4010 1840 710 640 710 400 4010 2080 0 4 1 0 1 0
% exp(-x)
\special{pn 8}%
\special{pn 8}%
\special{pa 518 400}%
\special{pa 520 403}%
\special{pa 523 407}%
\special{ip}%
\special{pa 549 441}%
\special{pa 550 443}%
\special{pa 554 448}%
\special{ip}%
\special{pa 580 482}%
\special{pa 580 482}%
\special{pa 586 489}%
\special{ip}%
\special{pa 612 522}%
\special{pa 616 527}%
\special{pa 617 529}%
\special{ip}%
\special{pa 644 562}%
\special{pa 650 569}%
\special{ip}%
\special{pa 677 601}%
\special{pa 683 608}%
\special{ip}%
\special{pa 710 640}%
\special{pa 716 646}%
\special{pa 720 652}%
\special{pa 730 663}%
\special{pa 736 669}%
\special{pa 740 674}%
\special{pa 746 680}%
\special{pa 750 685}%
\special{pa 756 691}%
\special{pa 760 696}%
\special{pa 766 702}%
\special{pa 770 707}%
\special{pa 780 718}%
\special{pa 786 723}%
\special{pa 796 734}%
\special{pa 800 739}%
\special{pa 826 765}%
\special{pa 830 770}%
\special{pa 870 810}%
\special{pa 876 815}%
\special{pa 900 839}%
\special{pa 906 844}%
\special{pa 916 853}%
\special{pa 920 858}%
\special{pa 930 867}%
\special{pa 936 872}%
\special{pa 946 881}%
\special{pa 950 886}%
\special{pa 956 890}%
\special{pa 960 895}%
\special{pa 966 899}%
\special{pa 970 904}%
\special{pa 976 908}%
\special{pa 986 917}%
\special{pa 990 921}%
\special{pa 1000 930}%
\special{pa 1006 934}%
\special{pa 1016 943}%
\special{pa 1020 947}%
\special{pa 1036 960}%
\special{pa 1040 964}%
\special{pa 1126 1032}%
\special{pa 1130 1036}%
\special{pa 1150 1051}%
\special{pa 1156 1055}%
\special{pa 1170 1066}%
\special{pa 1176 1070}%
\special{pa 1186 1077}%
\special{pa 1190 1081}%
\special{pa 1196 1084}%
\special{pa 1200 1088}%
\special{pa 1206 1091}%
\special{pa 1210 1095}%
\special{pa 1220 1102}%
\special{pa 1226 1106}%
\special{pa 1230 1109}%
\special{pa 1240 1116}%
\special{pa 1246 1119}%
\special{pa 1250 1123}%
\special{pa 1256 1126}%
\special{pa 1260 1130}%
\special{pa 1266 1133}%
\special{pa 1276 1140}%
\special{pa 1280 1143}%
\special{pa 1296 1153}%
\special{pa 1300 1156}%
\special{pa 1316 1166}%
\special{pa 1320 1169}%
\special{pa 1346 1185}%
\special{pa 1350 1188}%
\special{pa 1420 1230}%
\special{pa 1426 1233}%
\special{pa 1456 1250}%
\special{pa 1460 1253}%
\special{pa 1476 1261}%
\special{pa 1480 1264}%
\special{pa 1496 1272}%
\special{pa 1500 1275}%
\special{pa 1526 1288}%
\special{pa 1530 1291}%
\special{pa 1536 1293}%
\special{pa 1540 1296}%
\special{pa 1620 1336}%
\special{pa 1626 1338}%
\special{pa 1630 1341}%
\special{pa 1636 1343}%
\special{pa 1660 1355}%
\special{pa 1666 1357}%
\special{pa 1680 1364}%
\special{pa 1686 1366}%
\special{pa 1700 1373}%
\special{pa 1706 1375}%
\special{pa 1726 1384}%
\special{pa 1730 1386}%
\special{pa 1766 1401}%
\special{pa 1770 1403}%
\special{pa 1856 1437}%
\special{pa 1860 1439}%
\special{pa 1896 1452}%
\special{pa 1900 1454}%
\special{pa 1926 1463}%
\special{pa 1930 1465}%
\special{pa 1946 1470}%
\special{pa 1950 1472}%
\special{pa 1966 1477}%
\special{pa 1970 1479}%
\special{pa 1986 1484}%
\special{pa 1990 1486}%
\special{pa 2000 1489}%
\special{pa 2006 1491}%
\special{pa 2016 1494}%
\special{pa 2020 1496}%
\special{pa 2026 1497}%
\special{pa 2030 1499}%
\special{pa 2040 1502}%
\special{pa 2046 1504}%
\special{pa 2056 1507}%
\special{pa 2060 1509}%
\special{pa 2066 1510}%
\special{pa 2070 1512}%
\special{pa 2076 1513}%
\special{pa 2080 1515}%
\special{pa 2086 1516}%
\special{pa 2090 1518}%
\special{pa 2096 1519}%
\special{pa 2100 1521}%
\special{pa 2110 1524}%
\special{pa 2116 1526}%
\special{pa 2120 1527}%
\special{pa 2130 1530}%
\special{pa 2136 1531}%
\special{pa 2140 1533}%
\special{pa 2146 1534}%
\special{pa 2150 1536}%
\special{pa 2156 1537}%
\special{pa 2160 1539}%
\special{pa 2166 1540}%
\special{pa 2170 1542}%
\special{pa 2176 1543}%
\special{pa 2186 1546}%
\special{pa 2190 1547}%
\special{pa 2196 1549}%
\special{pa 2200 1550}%
\special{pa 2210 1553}%
\special{pa 2216 1554}%
\special{pa 2226 1557}%
\special{pa 2230 1558}%
\special{pa 2240 1561}%
\special{pa 2246 1562}%
\special{pa 2256 1565}%
\special{pa 2260 1566}%
\special{pa 2270 1569}%
\special{pa 2276 1570}%
\special{pa 2290 1574}%
\special{pa 2296 1575}%
\special{pa 2310 1579}%
\special{pa 2316 1580}%
\special{pa 2330 1584}%
\special{pa 2336 1585}%
\special{pa 2360 1591}%
\special{pa 2386 1597}%
\special{pa 2390 1598}%
\special{pa 2420 1605}%
\special{pa 2426 1606}%
\special{pa 2480 1618}%
\special{pa 2486 1619}%
\special{pa 2596 1641}%
\special{pa 2600 1642}%
\special{pa 2660 1653}%
\special{pa 2666 1654}%
\special{pa 2700 1660}%
\special{pa 2766 1671}%
\special{pa 2786 1674}%
\special{pa 2790 1675}%
\special{pa 2806 1677}%
\special{pa 2810 1678}%
\special{pa 2830 1681}%
\special{pa 2836 1682}%
\special{pa 2850 1684}%
\special{pa 2856 1685}%
\special{pa 2866 1686}%
\special{pa 2870 1687}%
\special{pa 2886 1689}%
\special{pa 2890 1690}%
\special{pa 2906 1692}%
\special{pa 2910 1693}%
\special{pa 2920 1694}%
\special{pa 2926 1695}%
\special{pa 2936 1696}%
\special{pa 2940 1697}%
\special{pa 2950 1698}%
\special{pa 2956 1699}%
\special{pa 2966 1700}%
\special{pa 2970 1701}%
\special{pa 2980 1702}%
\special{pa 2986 1703}%
\special{pa 2996 1704}%
\special{pa 3000 1705}%
\special{pa 3010 1706}%
\special{pa 3016 1707}%
\special{pa 3026 1708}%
\special{pa 3030 1709}%
\special{pa 3036 1709}%
\special{pa 3040 1710}%
\special{pa 3050 1711}%
\special{pa 3056 1712}%
\special{pa 3060 1712}%
\special{pa 3066 1713}%
\special{pa 3076 1714}%
\special{pa 3080 1715}%
\special{pa 3086 1715}%
\special{pa 3090 1716}%
\special{pa 3100 1717}%
\special{pa 3106 1718}%
\special{pa 3110 1718}%
\special{pa 3116 1719}%
\special{pa 3126 1720}%
\special{pa 3130 1721}%
\special{pa 3136 1721}%
\special{pa 3140 1722}%
\special{pa 3146 1722}%
\special{pa 3150 1723}%
\special{pa 3160 1724}%
\special{pa 3166 1725}%
\special{pa 3170 1725}%
\special{pa 3176 1726}%
\special{pa 3180 1726}%
\special{pa 3186 1727}%
\special{pa 3190 1727}%
\special{pa 3196 1728}%
\special{pa 3200 1728}%
\special{pa 3206 1729}%
\special{pa 3210 1729}%
\special{pa 3216 1730}%
\special{pa 3226 1731}%
\special{pa 3230 1732}%
\special{pa 3236 1732}%
\special{pa 3240 1733}%
\special{pa 3246 1733}%
\special{pa 3250 1734}%
\special{pa 3256 1734}%
\special{pa 3260 1735}%
\special{pa 3266 1735}%
\special{pa 3270 1736}%
\special{pa 3276 1736}%
\special{pa 3280 1737}%
\special{pa 3286 1737}%
\special{pa 3290 1738}%
\special{pa 3296 1738}%
\special{pa 3300 1739}%
\special{pa 3306 1739}%
\special{pa 3310 1740}%
\special{pa 3316 1740}%
\special{pa 3326 1741}%
\special{pa 3330 1741}%
\special{pa 3336 1742}%
\special{pa 3340 1742}%
\special{pa 3346 1743}%
\special{pa 3350 1743}%
\special{pa 3356 1744}%
\special{pa 3360 1744}%
\special{pa 3366 1745}%
\special{pa 3370 1745}%
\special{pa 3376 1746}%
\special{pa 3380 1746}%
\special{pa 3390 1747}%
\special{pa 3396 1747}%
\special{pa 3400 1748}%
\special{pa 3406 1748}%
\special{pa 3410 1749}%
\special{pa 3416 1749}%
\special{pa 3426 1750}%
\special{pa 3430 1750}%
\special{pa 3436 1751}%
\special{pa 3440 1751}%
\special{pa 3446 1752}%
\special{pa 3450 1752}%
\special{pa 3460 1753}%
\special{pa 3466 1753}%
\special{pa 3470 1754}%
\special{pa 3476 1754}%
\special{pa 3480 1755}%
\special{pa 3486 1755}%
\special{pa 3496 1756}%
\special{pa 3500 1756}%
\special{pa 3506 1757}%
\special{pa 3510 1757}%
\special{pa 3520 1758}%
\special{pa 3526 1758}%
\special{pa 3536 1759}%
\special{pa 3540 1759}%
\special{pa 3546 1760}%
\special{pa 3550 1760}%
\special{pa 3560 1761}%
\special{pa 3566 1761}%
\special{pa 3570 1762}%
\special{pa 3576 1762}%
\special{pa 3586 1763}%
\special{pa 3590 1763}%
\special{pa 3600 1764}%
\special{pa 3606 1764}%
\special{pa 3616 1765}%
\special{pa 3620 1765}%
\special{pa 3626 1766}%
\special{pa 3630 1766}%
\special{pa 3640 1767}%
\special{pa 3646 1767}%
\special{pa 3656 1768}%
\special{pa 3660 1768}%
\special{pa 3670 1769}%
\special{pa 3676 1769}%
\special{pa 3686 1770}%
\special{pa 3690 1770}%
\special{pa 3700 1771}%
\special{pa 3706 1771}%
\special{pa 3716 1772}%
\special{pa 3720 1772}%
\special{pa 3730 1773}%
\special{pa 3736 1773}%
\special{pa 3746 1774}%
\special{pa 3750 1774}%
\special{pa 3760 1775}%
\special{pa 3766 1775}%
\special{pa 3780 1776}%
\special{pa 3786 1776}%
\special{pa 3796 1777}%
\special{pa 3800 1777}%
\special{pa 3810 1778}%
\special{pa 3816 1778}%
\special{pa 3830 1779}%
\special{pa 3836 1779}%
\special{pa 3846 1780}%
\special{pa 3850 1780}%
\special{pa 3866 1781}%
\special{pa 3870 1781}%
\special{pa 3880 1782}%
\special{pa 3886 1782}%
\special{pa 3900 1783}%
\special{pa 3906 1783}%
\special{pa 3916 1784}%
\special{pa 3920 1784}%
\special{pa 3936 1785}%
\special{pa 3940 1785}%
\special{pa 3956 1786}%
\special{pa 3960 1786}%
\special{pa 3976 1787}%
\special{pa 3980 1787}%
\special{pa 3996 1788}%
\special{pa 4000 1788}%
\special{pa 4010 1789}%
\special{fp}%
\special{pn 8}%
\special{pa 4019 1789}%
\special{pa 4020 1789}%
\special{pa 4036 1790}%
\special{pa 4040 1790}%
\special{pa 4056 1791}%
\special{pa 4060 1791}%
\special{pa 4060 1791}%
\special{ip}%
\special{pa 4069 1791}%
\special{pa 4080 1792}%
\special{pa 4086 1792}%
\special{pa 4100 1793}%
\special{pa 4106 1793}%
\special{pa 4110 1793}%
\special{ip}%
\special{pa 4119 1794}%
\special{pa 4120 1794}%
\special{pa 4126 1794}%
\special{pa 4146 1795}%
\special{pa 4150 1795}%
\special{pa 4160 1795}%
\special{ip}%
\special{pa 4169 1796}%
\special{pa 4170 1796}%
\special{pa 4176 1796}%
\special{pa 4190 1797}%
\special{pa 4196 1797}%
\special{pa 4210 1798}%
\special{ip}%
\special{pa 4219 1798}%
\special{pa 4220 1798}%
\special{pa 4240 1799}%
\special{pa 4246 1799}%
\special{pa 4260 1800}%
\special{ip}%
\special{pa 4269 1800}%
\special{pa 4270 1800}%
\special{pa 4296 1801}%
\special{pa 4300 1801}%
\special{pa 4310 1802}%
\special{ip}%
% FUNC 2 0 3 0 Black White
% 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1
% pi
\special{pn 8}%
\special{pn 8}%
\special{pa 4010 400}%
\special{pa 4010 409}%
\special{ip}%
\special{pa 4010 448}%
\special{pa 4010 457}%
\special{ip}%
\special{pa 4010 496}%
\special{pa 4010 505}%
\special{ip}%
\special{pa 4010 544}%
\special{pa 4010 553}%
\special{ip}%
\special{pa 4010 592}%
\special{pa 4010 601}%
\special{ip}%
\special{ip}%
\special{pa 4010 640}%
\special{pa 4010 1840}%
\special{fp}%
\special{pn 8}%
\special{pa 4010 1849}%
\special{pa 4010 1888}%
\special{ip}%
\special{pa 4010 1897}%
\special{pa 4010 1936}%
\special{ip}%
\special{pa 4010 1945}%
\special{pa 4010 1984}%
\special{ip}%
\special{pa 4010 1993}%
\special{pa 4010 2032}%
\special{ip}%
\special{pa 4010 2041}%
\special{pa 4010 2080}%
\special{ip}%
% FUNC 2 0 3 0 Black White
% 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1
% pi/2
\special{pn 8}%
\special{pn 8}%
\special{pa 2360 400}%
\special{pa 2360 409}%
\special{ip}%
\special{pa 2360 448}%
\special{pa 2360 457}%
\special{ip}%
\special{pa 2360 496}%
\special{pa 2360 505}%
\special{ip}%
\special{pa 2360 544}%
\special{pa 2360 553}%
\special{ip}%
\special{pa 2360 592}%
\special{pa 2360 601}%
\special{ip}%
\special{ip}%
\special{pa 2360 640}%
\special{pa 2360 1840}%
\special{fp}%
\special{pn 8}%
\special{pa 2360 1849}%
\special{pa 2360 1888}%
\special{ip}%
\special{pa 2360 1897}%
\special{pa 2360 1936}%
\special{ip}%
\special{pa 2360 1945}%
\special{pa 2360 1984}%
\special{ip}%
\special{pa 2360 1993}%
\special{pa 2360 2032}%
\special{ip}%
\special{pa 2360 2041}%
\special{pa 2360 2080}%
\special{ip}%
% FUNC 2 0 3 0 Black White
% 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1
% pi/4
\special{pn 8}%
\special{pn 8}%
\special{pa 1536 400}%
\special{pa 1536 409}%
\special{ip}%
\special{pa 1536 448}%
\special{pa 1536 457}%
\special{ip}%
\special{pa 1536 496}%
\special{pa 1536 505}%
\special{ip}%
\special{pa 1536 544}%
\special{pa 1536 553}%
\special{ip}%
\special{pa 1536 592}%
\special{pa 1536 601}%
\special{ip}%
\special{ip}%
\special{pa 1536 640}%
\special{pa 1536 1840}%
\special{fp}%
\special{pn 8}%
\special{pa 1536 1849}%
\special{pa 1536 1888}%
\special{ip}%
\special{pa 1536 1897}%
\special{pa 1536 1936}%
\special{ip}%
\special{pa 1536 1945}%
\special{pa 1536 1984}%
\special{ip}%
\special{pa 1536 1993}%
\special{pa 1536 2032}%
\special{ip}%
\special{pa 1536 2041}%
\special{pa 1536 2080}%
\special{ip}%
% FUNC 2 0 3 0 Black White
% 9 410 400 4310 2080 710 1840 4010 1840 710 640 410 640 4310 1840 0 4 1 1
% pi/4*3
\special{pn 8}%
\special{pn 8}%
\special{pa 3185 400}%
\special{pa 3185 409}%
\special{ip}%
\special{pa 3185 448}%
\special{pa 3185 457}%
\special{ip}%
\special{pa 3185 496}%
\special{pa 3185 505}%
\special{ip}%
\special{pa 3185 544}%
\special{pa 3185 553}%
\special{ip}%
\special{pa 3185 592}%
\special{pa 3185 601}%
\special{ip}%
\special{ip}%
\special{pa 3185 640}%
\special{pa 3185 1840}%
\special{fp}%
\special{pn 8}%
\special{pa 3185 1849}%
\special{pa 3185 1888}%
\special{ip}%
\special{pa 3185 1897}%
\special{pa 3185 1936}%
\special{ip}%
\special{pa 3185 1945}%
\special{pa 3185 1984}%
\special{ip}%
\special{pa 3185 1993}%
\special{pa 3185 2032}%
\special{ip}%
\special{pa 3185 2041}%
\special{pa 3185 2080}%
\special{ip}%
% FUNC 2 0 3 0 Black White
% 10 410 400 4310 2080 710 1840 4010 1840 710 640 710 400 4010 2080 0 4 1 0 0 0
% 1
\special{pn 8}%
\special{pn 8}%
\special{pa 410 640}%
\special{pa 419 640}%
\special{ip}%
\special{pa 460 640}%
\special{pa 469 640}%
\special{ip}%
\special{pa 510 640}%
\special{pa 519 640}%
\special{ip}%
\special{pa 560 640}%
\special{pa 569 640}%
\special{ip}%
\special{pa 610 640}%
\special{pa 619 640}%
\special{ip}%
\special{pa 660 640}%
\special{pa 669 640}%
\special{ip}%
\special{pa 710 640}%
\special{pa 710 640}%
\special{ip}%
\special{pa 710 640}%
\special{pa 4010 640}%
\special{fp}%
\special{pn 8}%
\special{pa 4019 640}%
\special{pa 4060 640}%
\special{ip}%
\special{pa 4069 640}%
\special{pa 4110 640}%
\special{ip}%
\special{pa 4119 640}%
\special{pa 4160 640}%
\special{ip}%
\special{pa 4169 640}%
\special{pa 4210 640}%
\special{ip}%
\special{pa 4219 640}%
\special{pa 4260 640}%
\special{ip}%
\special{pa 4269 640}%
\special{pa 4310 640}%
\special{ip}%
% STR 2 0 3 0 Black White
% 4 1450 2020 1450 2120 2 0 0 0
% $\Dfrac14\pi$
\put(14.5000,-21.2000){\makebox(0,0)[lb]{$\Dfrac14\pi$}}%
% STR 2 0 3 0 Black White
% 4 2320 2020 2320 2120 2 0 0 0
% $\Dfrac12\pi$
\put(23.2000,-21.2000){\makebox(0,0)[lb]{$\Dfrac12\pi$}}%
% STR 2 0 3 0 Black White
% 4 3100 2010 3100 2110 2 0 0 0
% $\Dfrac34\pi$
\put(31.0000,-21.1000){\makebox(0,0)[lb]{$\Dfrac34\pi$}}%
% STR 2 0 3 0 Black White
% 4 3940 1920 3940 2020 2 0 0 0
% $\pi$
\put(39.4000,-20.2000){\makebox(0,0)[lb]{$\pi$}}%
\end{picture}}%
\end{center}
ただし,図の曲線は$y=e^{-x}\ (0\LEQQ x \LEQQ \pi)$である.
\item 正の整数$n$について,
\[I_n=\dint_0^{n\pi}e^{-x}|\sin{x}|dx\]
とする.このとき,極限値$\dlim_{n\to\infty}I_n$を求めよ.
\end{enumerate}
%--------------------------------------------------------------
\end{framed}
%\end{FRAME}
%--- 解答 ------------------------------------------------------------------------
{\footnotesize
}% footnotesize
%%%%%%% ■ 本文終了 ■ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{document}