大阪大学 文系 2000年度 問3

解答を見る

解答作成者: 森 宏征

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 大阪大学
学科・方式 文系
年度 2000年度
問No 問3
学部 文学部 ・ 人間科学部 ・ 外国語学部 ・ 法学部 ・ 経済学部
カテゴリ 積分法
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[a4paper,12pt,fleqn]{jreport} \usepackage{amsmath} \usepackage{amssymb} \usepackage{ascmac} \usepackage{vector3} \setlength{\topmargin}{-25mm} \setlength{\oddsidemargin}{2.5mm} \setlength{\textwidth}{420pt} \setlength{\textheight}{700pt} \usepackage{custom_mori} \usepackage{color} \ExecuteOptions{usename} \usepackage{pifont} \begin{document} \setlength{\abovedisplayskip}{0.5zw} \setlength{\belowdisplayskip}{0.5zw} 関数 \[ f(x) = x - 2 + 3\zettaiti{x - 1} \] を考える.$0 \leqq x \leqq 2$ の範囲で,関数 \[ g(x) = \left|\int_0^x f(t)\,dt \right| + \left|\int_x^2 f(t)\,dt \right| \] の最大値を求めよ. \hfill(配点率35%) \end{document}