東北大学 前期理系 2004年度 問1

解答を見る

解答作成者: 伊藤 愁一

このコンテンツをご覧いただくためにはJavaScriptをONにし、最新のFlash Playerが必要です。

最新のFlash Playerのインストールはこちら

入試情報

大学名 東北大学
学科・方式 前期理系
年度 2004年度
問No 問1
学部 理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 農学部
カテゴリ 数と式 ・ ベクトル
状態 解答 解説なし ウォッチリスト

コメントをつけるにはログインが必要です。

コメントはまだありません。

\documentclass[fleqn,12pt]{jsarticle} %\usepackage[dvips,dviout]{graphicx,color} \usepackage{ascmac,array,framed,wrapfig} \usepackage{enumerate,amssymb,amsmath} %\usepackage{picins} %\usepackage[noreplace]{otf} %\usepackage{bm} \newcommand{\mb}[1]{\mbox{\boldmath $ #1 $}} % math-italic の bold 体が使える. % 指定は \mb. 例)\mb{y} : y の bold 体 \newcommand{\MARU}[1]{{\ooalign{\hfil#1\/\hfil\crcr\raise.167ex\hbox{\mathhexbox20D}}}} \def\Noteq{\mathrel{% \setbox0\hbox{=}\hbox{=}\llap{\hbox to\wd0{\hss$\backslash$\hss}}}} \newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}} \newcommand{\Not}[1]{\ooalign{\hfil$\backslash$\hfil\crcr$#1$}} \newcommand{\Dfrac}[2]{\dfrac{\,#1\,}{\,#2\,}} \newcommand{\VeC}[1]{\overrightarrow{\mathstrut {\,#1\,}}} \newcommand{\VEC}[1]{\overrightarrow{\mathstrut {\,\mathrm{#1}\,}}} \newcommand{\Frac}[2]{\frac{\,#1\,}{\,#2\,}} \newcommand{\comb}[2]{{}_{#1}\mathrm{C}\,{}_{#2}} \newcommand{\parm}[2]{{}_{#1}\mathrm{P}\,{}_{#2}} \linespread{1.2} \def\labelenumi{(\theenumi)} \def\labelenumii{(\theenumii)} \def\labelenumiii{(\theenumiii)} \def\theenumi{\arabic{enumi}} \def\theenumii{\roman{enumii}} \def\theenumiii{\alph{enumiii}} \pagestyle{empty} \begin{document} 平面ベクトル $\VeC{a}\,,\,\VeC{b}$ は $|\VeC{a}|^{2} = 1,~|\VeC{b}|^{2} = |\VeC{b} -\VeC{a}|^{2} = \Dfrac{1}{2}$ を満たすとする. \begin{enumerate} \item $k,l$ を整数とする.$|k \VeC{a} + l\VeC{b}|^{2}$ が整数であるための必要十分条件は $l$ が偶数であることを示せ. \item $|k \VeC{a} + l\VeC{b}|^{2} =0$ となる整数の組 $(k,l)$ をすべて求めよ. \item 整数の組 $(k,l)$ を条件 $(k,l) \Noteq (0,0)$ のもとで動かすとき,$|k \VeC{a} + l\VeC{b}|^{2}$ の最小値を与える $(k,l)$ をすべて求めよ. \end{enumerate} \end{document}