解答を見る
解答作成者: 伊藤 愁一
入試情報
大学名 |
北海道大学 |
学科・方式 |
前期理系 |
年度 |
2005年度 |
問No |
問1 |
学部 |
理 ・ 医 ・ 歯 ・ 薬 ・ 工 ・ 農 ・ 獣医 ・ 水産
|
カテゴリ |
微分法 ・ 積分法
|
状態 |
 |
\documentclass[fleqn,12pt]{jsarticle}
%\usepackage[dvips,dviout]{graphicx,color}
\usepackage{ascmac,array,framed,wrapfig}
\usepackage{enumerate,amssymb,amsmath}
%\usepackage{picins}
%\usepackage[noreplace]{otf}
%\usepackage{bm}
\newcommand{\mb}[1]{\mbox{\boldmath $ #1 $}}
% math-italic の bold 体が使える.
% 指定は \mb. 例)\mb{y} : y の bold 体
\newcommand{\MARU}[1]{{\ooalign{\hfil#1\/\hfil\crcr\raise.167ex\hbox{\mathhexbox20D}}}}
\def\Noteq{\mathrel{%
\setbox0\hbox{=}\hbox{=}\llap{\hbox to\wd0{\hss$\backslash$\hss}}}}
\newcommand{\ssqrt}[1]{\sqrt{\smash[b]{\mathstrut #1}}}
\newcommand{\Not}[1]{\ooalign{\hfil$\backslash$\hfil\crcr$#1$}}
\def\labelenumi{(\theenumi)}
\def\labelenumii{(\theenumii)}
\def\labelenumiii{(\theenumiii)}
\def\theenumi{\arabic{enumi}}
\def\theenumii{\roman{enumii}}
\def\theenumiii{\alph{enumiii}}
\pagestyle{empty}
\begin{document}
次の問に答えよ.
\begin{enumerate}
\item 方程式 $e^{2a} -2e^{a} -1=0$ を満たす実数 $a$ を求めよ.ただし,$e$ は自然対数の底とする.
\vspace{1mm}
\item $t\geqq 0$ に対して~$\displaystyle F(t) = \int_{0}^{t} \dfrac{e^{x}}{\,e^{x} + e^{2t}\,} dx$~を求めよ.
\vspace{1mm}
\item $t\geqq 0$ の範囲での $F(t)$ の最大値と,~最大値を与える $t$ の値を求めよ.
\end{enumerate}
\end{document}