問題へ戻る
解答の著作権は解答作成者に帰属します。無断転載、複製を禁止します。
解答作成者: 森 宏征
入試情報
大学名 |
大阪大学 |
学科・方式 |
前期理系 |
年度 |
1980年度 |
問No |
問5 |
学部 |
理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
|
カテゴリ |
|
状態 |
 |
コメントはまだありません。
コメントをつけるにはログインが必要です。
\documentclass[a4paper,12pt,fleqn]{jreport}
\setlength{\topmargin}{-25mm}
\setlength{\oddsidemargin}{2.5mm}
\setlength{\textwidth}{420pt}
\setlength{\textheight}{700pt}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{ascmac}
\usepackage{graphicx}
\usepackage{delarray}
\usepackage{multicol}
\usepackage{amscd}
\usepackage{pifont}
\usepackage{color}
\ExecuteOptions{usename}
\usepackage{vector3}
\usepackage{custom_mori}
\begin{document}
\setlength{\abovedisplayskip}{0.5zw}
\setlength{\belowdisplayskip}{0.5zw}
\begin{FRAME}
次の条件を満たす関数 $f(x)\,\,\,(x > 0)$ を求めよ.
曲線 $C : y = f(x)\,\,\,(x > 0)$ 上の任意の点Pにおける接線と$x$軸との交点をQとすると,線分PQは$y$軸によって2等分される.
また,
点$(0,\,\,3)$と $C$ 上の点との距離の最小値は$\sqrt{\vphantom{b} 2}$である.
\end{FRAME}
\noindent{\color[named]{BurntOrange}\bfseries \fbox{解答}}
\vskip 2mm
$\P(t,\,\,f(t))\,\,\,(t > 0)$とおく.
Pにおける $C$ の接線は,
\begin{align*}
y = f'(t)(x - t) + f(t)
\tag*{$\cdott\MARU{1}$}
\end{align*}
$y$軸が線分PQを二等分することから,
$\Q(-t,\,\,0)$とおける.
Qは\MARU{1}上の点だから,
\begin{align*}
0 = f'(t)(-t - t) + f(t) = 0 \qquad
\therefore \,\,\,
f'(t) - \frac{1}{2t}f(t) = 0
\tag*{$\cdott\MARU{2}$}
\end{align*}
$\displaystyle\int \left({-\dfrac{1}{2t}}\right)dt
= -\dfrac{1}{2}\log t + A\,\,\,(Aは定数)$ に留意して,\smallskip
\MARU{2}の両辺に $e^{-\frac{1}{2}\log t} = \dfrac{1}{\sqrt{\vphantom{b} t}}$ %
を掛ければ,\\
\begin{minipage}{240pt}
\begin{gather*}
\frac{1}{\sqrt{\vphantom{b} t}}f'(t)
- \frac{2}{t\sqrt{\vphantom{b} t}}f(t) = 0 \\[1mm]
\left\{\frac{1}{\sqrt{\vphantom{b} t}}f(t) \right\}^{\! \prime} = 0
\quad
\left(\because\,\,\,
\left(\frac{1}{\sqrt{\vphantom{b} t}} \right)^{\!\! \prime}
= -\frac{2}{t\sqrt{\vphantom{b} t}}
\right)\\[1mm]
\frac{1}{\sqrt{\vphantom{b} t}}f(t) = B \quad (Bは定数) \\
\therefore \,\,\,
f(x) = B\sqrt{\vphantom{b} x}
\quad\mbox{\footnotesize$(tをxにとり換えた)$}
\end{gather*}
\end{minipage}
\begin{minipage}{140pt}
%\input{osaka80s5_zu_2}
%WinTpicVersion3.08
\unitlength 0.1in
\begin{picture}( 22.6800, 14.2000)( 4.0000,-20.2000)
% STR 2 0 3 0
% 3 1500 586 1500 600 4 2400
% $y$
\put(15.0000,-6.0000){\makebox(0,0)[rt]{$y$}}%
% STR 2 0 3 0
% 3 2670 1727 2670 1740 4 2400
% $x$
\put(26.7000,-17.4000){\makebox(0,0)[rt]{$x$}}%
% VECTOR 2 0 3 0
% 2 1534 2020 1534 600
%
\special{pn 8}%
\special{pa 1534 2020}%
\special{pa 1534 600}%
\special{fp}%
\special{sh 1}%
\special{pa 1534 600}%
\special{pa 1514 668}%
\special{pa 1534 654}%
\special{pa 1554 668}%
\special{pa 1534 600}%
\special{fp}%
% VECTOR 2 0 3 0
% 2 400 1696 2668 1696
%
\special{pn 8}%
\special{pa 400 1696}%
\special{pa 2668 1696}%
\special{fp}%
\special{sh 1}%
\special{pa 2668 1696}%
\special{pa 2602 1676}%
\special{pa 2616 1696}%
\special{pa 2602 1716}%
\special{pa 2668 1696}%
\special{fp}%
% DOT 0 0 3 0
% 1 2182 1048
%
\special{pn 20}%
\special{sh 1}%
\special{ar 2182 1048 10 10 0 6.28318530717959E+0000}%
% DOT 0 0 3 0
% 1 886 1696
%
\special{pn 20}%
\special{sh 1}%
\special{ar 886 1696 10 10 0 6.28318530717959E+0000}%
% STR 2 0 3 0
% 3 2210 1099 2210 1180 2 0
% {\scriptsize$\P(t,\,f(t))$}
\put(22.1000,-11.8000){\makebox(0,0)[lb]{{\scriptsize$\P(t,\,f(t))$}}}%
% STR 2 0 3 0
% 3 460 1569 460 1650 2 0
% {\scriptsize$\Q(-t,\,0)$}
\put(4.6000,-16.5000){\makebox(0,0)[lb]{{\scriptsize$\Q(-t,\,0)$}}}%
% LINE 2 2 3 0
% 2 2182 1696 2182 1048
%
\special{pn 8}%
\special{pa 2182 1696}%
\special{pa 2182 1048}%
\special{dt 0.045}%
% LINE 2 0 3 0
% 2 400 1939 2668 810
%
\special{pn 8}%
\special{pa 400 1940}%
\special{pa 2668 810}%
\special{fp}%
% CIRCLE 3 0 3 0
% 4 1210 1061 1218 1773 826 1809 1591 1806
%
\special{pn 4}%
\special{ar 1210 1062 712 712 1.0980629 2.0450818}%
% CIRCLE 3 0 3 0
% 4 1858 1061 1866 1773 1474 1809 2239 1806
%
\special{pn 4}%
\special{ar 1858 1062 712 712 1.0980629 2.0450818}%
% LINE 0 0 3 0
% 2 1194 1741 1194 1798
%
\special{pn 20}%
\special{pa 1194 1742}%
\special{pa 1194 1798}%
\special{fp}%
% LINE 0 0 3 0
% 2 1218 1741 1218 1798
%
\special{pn 20}%
\special{pa 1218 1742}%
\special{pa 1218 1798}%
\special{fp}%
% LINE 0 0 3 0
% 2 1846 1741 1846 1798
%
\special{pn 20}%
\special{pa 1846 1742}%
\special{pa 1846 1798}%
\special{fp}%
% LINE 0 0 3 0
% 2 1871 1741 1871 1798
%
\special{pn 20}%
\special{pa 1872 1742}%
\special{pa 1872 1798}%
\special{fp}%
% CIRCLE 3 0 3 0
% 4 1583 2279 2486 2219 1502 862 615 1461
%
\special{pn 4}%
\special{ar 1584 2280 906 906 3.8432009 4.6552881}%
% CIRCLE 3 0 3 0
% 4 2231 1955 3134 1895 2150 538 1263 1137
%
\special{pn 4}%
\special{ar 2232 1956 906 906 3.8432009 4.6552881}%
% CIRCLE 1 0 3 0
% 4 1186 1466 1186 1494 1186 1494 1186 1494
%
\special{pn 13}%
\special{ar 1186 1466 28 28 0.0000000 6.2831853}%
% CIRCLE 1 0 3 0
% 4 1838 1142 1838 1170 1838 1170 1838 1170
%
\special{pn 13}%
\special{ar 1838 1142 28 28 0.0000000 6.2831853}%
% SPLINE 1 0 3 0
% 14 1535 1630 1590 1500 1680 1400 1785 1290 1895 1220 2015 1140 2100 1095 2185 1050 2280 1005 2385 965 2450 935 2575 895 2635 875 2660 875
%
\special{pn 13}%
\special{pa 1536 1630}%
\special{pa 1546 1600}%
\special{pa 1556 1568}%
\special{pa 1568 1540}%
\special{pa 1584 1512}%
\special{pa 1602 1486}%
\special{pa 1622 1462}%
\special{pa 1644 1438}%
\special{pa 1666 1414}%
\special{pa 1688 1392}%
\special{pa 1710 1368}%
\special{pa 1732 1344}%
\special{pa 1754 1320}%
\special{pa 1776 1298}%
\special{pa 1802 1278}%
\special{pa 1828 1260}%
\special{pa 1856 1244}%
\special{pa 1884 1228}%
\special{pa 1910 1210}%
\special{pa 1938 1192}%
\special{pa 1964 1174}%
\special{pa 1990 1156}%
\special{pa 2016 1140}%
\special{pa 2044 1124}%
\special{pa 2074 1110}%
\special{pa 2102 1094}%
\special{pa 2130 1080}%
\special{pa 2158 1064}%
\special{pa 2186 1050}%
\special{pa 2216 1036}%
\special{pa 2244 1022}%
\special{pa 2274 1008}%
\special{pa 2304 996}%
\special{pa 2334 986}%
\special{pa 2364 974}%
\special{pa 2392 962}%
\special{pa 2422 948}%
\special{pa 2450 936}%
\special{pa 2480 924}%
\special{pa 2512 916}%
\special{pa 2542 908}%
\special{pa 2572 896}%
\special{pa 2602 884}%
\special{pa 2634 876}%
\special{pa 2660 876}%
\special{sp}%
% STR 2 0 3 0
% 3 1410 1750 1410 1850 2 0
% {\footnotesize O}
\put(14.1000,-18.5000){\makebox(0,0)[lb]{{\footnotesize O}}}%
% STR 2 0 3 0
% 3 1660 1420 1660 1520 2 0
% {\scriptsize $C$}
\put(16.6000,-15.2000){\makebox(0,0)[lb]{{\scriptsize $C$}}}%
\end{picture}%
\end{minipage}
\vskip 0.5zw
\noindent%
$B \leqq 0$ ならば点$(0,\,\,3)$と $C$ 上の点との距離の最小値は
$3\,\,(> \sqrt{\vphantom{b} 2})$となり矛盾.
ゆえに $B > 0$ である.
$(0,\,\,3)$との距離の最小値を与える $C$ 上の点を$\R(u^2,\,\,Bu)\,\,\,
(u > 0)$とおく.
Rは中心$\I(0,\,\,3)$,半径$\sqrt{\vphantom{b} 2}$の円 $K$ と $C$ の接点である.
Rが $K$ 上にあることから,\\
\begin{minipage}{230pt}
\begin{align*}
u^4 + (Bu - 3)^2 = 2
\tag*{$\cdott\MARU{3}$}
\end{align*}
\smallskip$\bekutoru{$\I\R$}$ はRにおける $C$ の接線に垂直であり,
この接線はベクトル \smallskip$(1,\,\,f'(u^2)) = \dfrac{1}{2u}(2u,\,\,B)$ に
平行だから,
\begin{gather*}
(u^2,\,\,Bu - 3) \cdot (2u,\,\,B) = 0 \\
\therefore \,\,\,
2u^3 + B(Bu - 3) = 0
\tag*{$\cdots\cdotssp\MARU{4}$}
\end{gather*}
$\MARU{3} \times 2 - \MARU{4} \times u$より $Bu = v$ とおけば,
\end{minipage}
\begin{minipage}{140pt}
\hspace*{1zw}%
%\input{osaka80s5_zu_4}
%WinTpicVersion3.08
\unitlength 0.1in
\begin{picture}( 20.7400, 18.4000)( 4.0000,-22.4000)
% STR 2 0 3 0
% 3 800 2199 800 2210 2 0
% {\footnotesize O}
\put(8.0000,-22.1000){\makebox(0,0)[lb]{{\footnotesize O}}}%
% STR 2 0 3 0
% 3 892 519 892 530 4 3200
% $y$
\put(8.9200,-5.3000){\makebox(0,0)[rt]{$y$}}%
% STR 2 0 3 0
% 3 2470 2109 2470 2120 4 3200
% $x$
\put(24.7000,-21.2000){\makebox(0,0)[rt]{$x$}}%
% VECTOR 2 0 3 0
% 2 920 2240 920 526
%
\special{pn 8}%
\special{pa 920 2240}%
\special{pa 920 526}%
\special{fp}%
\special{sh 1}%
\special{pa 920 526}%
\special{pa 900 594}%
\special{pa 920 580}%
\special{pa 940 594}%
\special{pa 920 526}%
\special{fp}%
% VECTOR 2 0 3 0
% 2 400 2085 2474 2085
%
\special{pn 8}%
\special{pa 400 2086}%
\special{pa 2474 2086}%
\special{fp}%
\special{sh 1}%
\special{pa 2474 2086}%
\special{pa 2408 2066}%
\special{pa 2422 2086}%
\special{pa 2408 2106}%
\special{pa 2474 2086}%
\special{fp}%
% FUNC 2 0 3 0
% 9 789 400 2474 2214 918 2085 1178 2085 918 1826 918 400 2474 2214 0 5 0 0
% 2sqrt(x)
\special{pn 8}%
\special{pa 920 2040}%
\special{pa 926 2000}%
\special{pa 930 1974}%
\special{pa 936 1954}%
\special{pa 940 1934}%
\special{pa 946 1918}%
\special{pa 950 1904}%
\special{pa 956 1890}%
\special{pa 960 1878}%
\special{pa 966 1866}%
\special{pa 970 1854}%
\special{pa 976 1842}%
\special{pa 980 1832}%
\special{pa 986 1822}%
\special{pa 990 1812}%
\special{pa 996 1804}%
\special{pa 1000 1794}%
\special{pa 1006 1786}%
\special{pa 1010 1778}%
\special{pa 1016 1770}%
\special{pa 1020 1762}%
\special{pa 1026 1754}%
\special{pa 1030 1746}%
\special{pa 1036 1738}%
\special{pa 1040 1730}%
\special{pa 1046 1724}%
\special{pa 1050 1716}%
\special{pa 1056 1710}%
\special{pa 1060 1702}%
\special{pa 1066 1696}%
\special{pa 1070 1690}%
\special{pa 1076 1682}%
\special{pa 1080 1676}%
\special{pa 1086 1670}%
\special{pa 1090 1664}%
\special{pa 1096 1658}%
\special{pa 1100 1652}%
\special{pa 1106 1646}%
\special{pa 1110 1640}%
\special{pa 1116 1634}%
\special{pa 1120 1628}%
\special{pa 1126 1624}%
\special{pa 1130 1618}%
\special{pa 1136 1612}%
\special{pa 1140 1606}%
\special{pa 1146 1602}%
\special{pa 1150 1596}%
\special{pa 1156 1590}%
\special{pa 1160 1586}%
\special{pa 1166 1580}%
\special{pa 1170 1576}%
\special{pa 1176 1570}%
\special{pa 1180 1566}%
\special{pa 1186 1560}%
\special{pa 1190 1556}%
\special{pa 1196 1550}%
\special{pa 1200 1546}%
\special{pa 1206 1542}%
\special{pa 1210 1536}%
\special{pa 1216 1532}%
\special{pa 1220 1528}%
\special{pa 1226 1522}%
\special{pa 1230 1518}%
\special{pa 1236 1514}%
\special{pa 1240 1510}%
\special{pa 1246 1504}%
\special{pa 1250 1500}%
\special{pa 1256 1496}%
\special{pa 1260 1492}%
\special{pa 1266 1488}%
\special{pa 1270 1482}%
\special{pa 1276 1478}%
\special{pa 1280 1474}%
\special{pa 1286 1470}%
\special{pa 1290 1466}%
\special{pa 1296 1462}%
\special{pa 1300 1458}%
\special{pa 1306 1454}%
\special{pa 1310 1450}%
\special{pa 1316 1446}%
\special{pa 1320 1442}%
\special{pa 1326 1438}%
\special{pa 1330 1434}%
\special{pa 1336 1430}%
\special{pa 1340 1426}%
\special{pa 1346 1422}%
\special{pa 1350 1418}%
\special{pa 1356 1414}%
\special{pa 1360 1410}%
\special{pa 1366 1406}%
\special{pa 1370 1402}%
\special{pa 1376 1398}%
\special{pa 1380 1394}%
\special{pa 1386 1392}%
\special{pa 1390 1388}%
\special{pa 1396 1384}%
\special{pa 1400 1380}%
\special{pa 1406 1376}%
\special{pa 1410 1372}%
\special{pa 1416 1370}%
\special{pa 1420 1366}%
\special{pa 1426 1362}%
\special{pa 1430 1358}%
\special{pa 1436 1356}%
\special{pa 1440 1352}%
\special{pa 1446 1348}%
\special{pa 1450 1344}%
\special{pa 1456 1342}%
\special{pa 1460 1338}%
\special{pa 1466 1334}%
\special{pa 1470 1330}%
\special{pa 1476 1328}%
\special{pa 1480 1324}%
\special{pa 1486 1320}%
\special{pa 1490 1318}%
\special{pa 1496 1314}%
\special{pa 1500 1310}%
\special{pa 1506 1308}%
\special{pa 1510 1304}%
\special{pa 1516 1300}%
\special{pa 1520 1298}%
\special{pa 1526 1294}%
\special{pa 1530 1290}%
\special{pa 1536 1288}%
\special{pa 1540 1284}%
\special{pa 1546 1282}%
\special{pa 1550 1278}%
\special{pa 1556 1274}%
\special{pa 1560 1272}%
\special{pa 1566 1268}%
\special{pa 1570 1266}%
\special{pa 1576 1262}%
\special{pa 1580 1258}%
\special{pa 1586 1256}%
\special{pa 1590 1252}%
\special{pa 1596 1250}%
\special{pa 1600 1246}%
\special{pa 1606 1244}%
\special{pa 1610 1240}%
\special{pa 1616 1238}%
\special{pa 1620 1234}%
\special{pa 1626 1232}%
\special{pa 1630 1228}%
\special{pa 1636 1226}%
\special{pa 1640 1222}%
\special{pa 1646 1220}%
\special{pa 1650 1216}%
\special{pa 1656 1214}%
\special{pa 1660 1210}%
\special{pa 1666 1208}%
\special{pa 1670 1204}%
\special{pa 1676 1202}%
\special{pa 1680 1198}%
\special{pa 1686 1196}%
\special{pa 1690 1192}%
\special{pa 1696 1190}%
\special{pa 1700 1188}%
\special{pa 1706 1184}%
\special{pa 1710 1182}%
\special{pa 1716 1178}%
\special{pa 1720 1176}%
\special{pa 1726 1172}%
\special{pa 1730 1170}%
\special{pa 1736 1168}%
\special{pa 1740 1164}%
\special{pa 1746 1162}%
\special{pa 1750 1158}%
\special{pa 1756 1156}%
\special{pa 1760 1154}%
\special{pa 1766 1150}%
\special{pa 1770 1148}%
\special{pa 1776 1146}%
\special{pa 1780 1142}%
\special{pa 1786 1140}%
\special{pa 1790 1136}%
\special{pa 1796 1134}%
\special{pa 1800 1132}%
\special{pa 1806 1128}%
\special{pa 1810 1126}%
\special{pa 1816 1124}%
\special{pa 1820 1120}%
\special{pa 1826 1118}%
\special{pa 1830 1116}%
\special{pa 1836 1112}%
\special{pa 1840 1110}%
\special{pa 1846 1108}%
\special{pa 1850 1104}%
\special{pa 1856 1102}%
\special{pa 1860 1100}%
\special{pa 1866 1096}%
\special{pa 1870 1094}%
\special{pa 1876 1092}%
\special{pa 1880 1090}%
\special{pa 1886 1086}%
\special{pa 1890 1084}%
\special{pa 1896 1082}%
\special{pa 1900 1078}%
\special{pa 1906 1076}%
\special{pa 1910 1074}%
\special{pa 1916 1072}%
\special{pa 1920 1068}%
\special{pa 1926 1066}%
\special{pa 1930 1064}%
\special{pa 1936 1062}%
\special{pa 1940 1058}%
\special{pa 1946 1056}%
\special{pa 1950 1054}%
\special{pa 1956 1050}%
\special{pa 1960 1048}%
\special{pa 1966 1046}%
\special{pa 1970 1044}%
\special{pa 1976 1042}%
\special{pa 1980 1038}%
\special{pa 1986 1036}%
\special{pa 1990 1034}%
\special{pa 1996 1032}%
\special{pa 2000 1028}%
\special{pa 2006 1026}%
\special{pa 2010 1024}%
\special{pa 2016 1022}%
\special{pa 2020 1020}%
\special{pa 2026 1016}%
\special{pa 2030 1014}%
\special{pa 2036 1012}%
\special{pa 2040 1010}%
\special{pa 2046 1008}%
\special{pa 2050 1004}%
\special{pa 2056 1002}%
\special{pa 2060 1000}%
\special{pa 2066 998}%
\special{pa 2070 996}%
\special{pa 2076 992}%
\special{pa 2080 990}%
\special{pa 2086 988}%
\special{pa 2090 986}%
\special{pa 2096 984}%
\special{pa 2100 982}%
\special{pa 2106 978}%
\special{pa 2110 976}%
\special{pa 2116 974}%
\special{pa 2120 972}%
\special{pa 2126 970}%
\special{pa 2130 968}%
\special{pa 2136 964}%
\special{pa 2140 962}%
\special{pa 2146 960}%
\special{pa 2150 958}%
\special{pa 2156 956}%
\special{pa 2160 954}%
\special{pa 2166 952}%
\special{pa 2170 948}%
\special{pa 2176 946}%
\special{pa 2180 944}%
\special{pa 2186 942}%
\special{pa 2190 940}%
\special{pa 2196 938}%
\special{pa 2200 936}%
\special{pa 2206 934}%
\special{pa 2210 930}%
\special{pa 2216 928}%
\special{pa 2220 926}%
\special{pa 2226 924}%
\special{pa 2230 922}%
\special{pa 2236 920}%
\special{pa 2240 918}%
\special{pa 2246 916}%
\special{pa 2250 914}%
\special{pa 2256 910}%
\special{pa 2260 908}%
\special{pa 2266 906}%
\special{pa 2270 904}%
\special{pa 2276 902}%
\special{pa 2280 900}%
\special{pa 2286 898}%
\special{pa 2290 896}%
\special{pa 2296 894}%
\special{pa 2300 892}%
\special{pa 2306 890}%
\special{pa 2310 886}%
\special{pa 2316 884}%
\special{pa 2320 882}%
\special{pa 2326 880}%
\special{pa 2330 878}%
\special{pa 2336 876}%
\special{pa 2340 874}%
\special{pa 2346 872}%
\special{pa 2350 870}%
\special{pa 2356 868}%
\special{pa 2360 866}%
\special{pa 2366 864}%
\special{pa 2370 862}%
\special{pa 2376 860}%
\special{pa 2380 858}%
\special{pa 2386 856}%
\special{pa 2390 852}%
\special{pa 2396 850}%
\special{pa 2400 848}%
\special{pa 2406 846}%
\special{pa 2410 844}%
\special{pa 2416 842}%
\special{pa 2420 840}%
\special{pa 2426 838}%
\special{pa 2430 836}%
\special{pa 2436 834}%
\special{pa 2440 832}%
\special{pa 2446 830}%
\special{pa 2450 828}%
\special{pa 2456 826}%
\special{pa 2460 824}%
\special{pa 2466 822}%
\special{pa 2470 820}%
\special{sp}%
% CIRCLE 2 0 3 0
% 4 918 1307 918 1674 918 1674 918 1674
%
\special{pn 8}%
\special{ar 918 1308 368 368 0.0000000 6.2831853}%
% DOT 0 0 3 0
% 1 1178 1566
%
\special{pn 20}%
\special{sh 1}%
\special{ar 1178 1566 10 10 0 6.28318530717959E+0000}%
% DOT 0 0 3 0
% 1 918 1307
%
\special{pn 20}%
\special{sh 1}%
\special{ar 918 1308 10 10 0 6.28318530717959E+0000}%
% LINE 2 0 3 0
% 2 918 1307 1178 1566
%
\special{pn 8}%
\special{pa 918 1308}%
\special{pa 1178 1566}%
\special{fp}%
% STR 2 0 3 0
% 3 570 1338 570 1370 2 0
% {\scriptsize$\I(0,\,3)$}
\put(5.7000,-13.7000){\makebox(0,0)[lb]{{\scriptsize$\I(0,\,3)$}}}%
% CIRCLE 3 0 3 0
% 4 776 1709 1074 2014 1440 1473 971 1161
%
\special{pn 4}%
\special{ar 776 1710 426 426 5.0542565 5.9416887}%
% STR 2 0 3 0
% 3 1040 1358 1040 1390 2 0
% {\scriptsize$\sqrt{2}$}
\put(10.4000,-13.9000){\makebox(0,0)[lb]{{\scriptsize$\sqrt{2}$}}}%
% STR 2 0 3 0
% 3 1220 1668 1220 1700 2 0
% {\scriptsize$\R(u^2,\,Bu)$}
\put(12.2000,-17.0000){\makebox(0,0)[lb]{{\scriptsize$\R(u^2,\,Bu)$}}}%
% STR 2 0 3 0
% 3 1990 1117 1990 1150 2 0
% {\scriptsize$C$}
\put(19.9000,-11.5000){\makebox(0,0)[lb]{{\scriptsize$C$}}}%
% STR 2 0 3 0
% 3 510 1017 510 1050 2 0
% {\scriptsize$K$}
\put(5.1000,-10.5000){\makebox(0,0)[lb]{{\scriptsize$K$}}}%
% LINE 2 0 3 0
% 2 2225 530 515 2225
%
\special{pn 8}%
\special{pa 2226 530}%
\special{pa 516 2226}%
\special{fp}%
% VECTOR 0 0 3 0
% 4 1600 1050 1855 795 1855 795 1855 795
%
\special{pn 20}%
\special{pa 1600 1050}%
\special{pa 1856 796}%
\special{fp}%
\special{sh 1}%
\special{pa 1856 796}%
\special{pa 1794 828}%
\special{pa 1818 834}%
\special{pa 1822 856}%
\special{pa 1856 796}%
\special{fp}%
\special{pa 1856 796}%
\special{pa 1856 796}%
\special{fp}%
% STR 2 0 3 0
% 3 1190 810 1190 860 2 0
% {\scriptsize$(1,\,f'(u^2))$}
\put(11.9000,-8.6000){\makebox(0,0)[lb]{{\scriptsize$(1,\,f'(u^2))$}}}%
% POLYLINE 2 0 3 0
% 4 1138 1525 1096 1568 1139 1610 1139 1610
%
\special{pn 8}%
\special{pa 1138 1526}%
\special{pa 1096 1568}%
\special{pa 1140 1610}%
\special{pa 1140 1610}%
\special{fp}%
\end{picture}%
\end{minipage}
\begin{gather*}
2(Bu - 3)^2 - Bu(Bu - 3) = 4 \\
v^2 - 9v + 14 = (v - 2)(v - 7) = 0 \\
\therefore \,\,\,
v = 2\,\,\,または\,\,\,7
\end{gather*}
$v = 2$ ならば\MARU{3}から,
\begin{gather*}
u^4 + (2 - 3)^2 = 2 \qquad
\therefore \,\,\,
u = 1 \quad(\,\because\,\,\,u > 0)
\end{gather*}
よって $2 = v = B \cdot 1$ から $B = 2$ を得る.
$v = 7$ ならば\MARU{3}から,
\begin{align*}
u^4 + (7 - 3)^2 = 2 \qquad
\therefore \,\,\,
u^4 = -14
\end{align*}
となり不適.
ゆえに,
\begin{align*}
f(x)
= \textcolor{red}{\boldsymbol{2\sqrt{\vphantom{b} x}}}
\tag*{$\Ans$}
\end{align*}
\end{document}