問題へ戻る
解答の著作権は解答作成者に帰属します。無断転載、複製を禁止します。
解答作成者: 森 宏征
入試情報
大学名 |
大阪大学 |
学科・方式 |
前期理系 |
年度 |
1989年度 |
問No |
問4 |
学部 |
理学部 ・ 医学部 ・ 歯学部 ・ 薬学部 ・ 工学部 ・ 基礎工学部
|
カテゴリ |
微分法の応用 ・ 積分法の応用
|
状態 |
 |
コメントはまだありません。
コメントをつけるにはログインが必要です。
\documentclass[a4paper,12pt,fleqn]{jreport}
\setlength{\topmargin}{-25mm}
\setlength{\oddsidemargin}{2.5mm}
\setlength{\textwidth}{420pt}
\setlength{\textheight}{700pt}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{ascmac}
\usepackage{graphicx}
\usepackage{delarray}
\usepackage{multicol}
\usepackage{amscd}
\usepackage{pifont}
\usepackage{color}
\ExecuteOptions{usename}
\usepackage{vector3}
\usepackage{custom_mori}
\begin{document}
\setlength{\abovedisplayskip}{0.5zw}
\setlength{\belowdisplayskip}{0.5zw}
\begin{FRAME}
$a$ は正の定数とする.
$t > 1$ に対し,
曲線 $y = x^a\log x$ 上の \\
点 $\P = (t,\,\,t^a\log t)$ における接線が,
$x$軸と交わる点をQとし,
点$(t,\,\,0)$をRとする.
三角形PQRの面積を $S_1(t)$,
曲線 $y = x^a\log x$ の $x \geqq 1$ の部分と,
2つの直線 $y = 0,\,\,\,x = t$ とで囲まれる部分の面積を $S_2(t)$ とする.
\smallskip
$\lim\limits_{t \to +\infty} \dfrac{S_2(t)}{S_1(t)}$ の値を求めよ.
\end{FRAME}
\noindent{\color[named]{BurntOrange}\bfseries \fbox{解答}}
\vskip 2mm
$(x^a\log x)^\prime = ax^{a-1}\log x + x^a \cdot \dfrac{1}{x}
= x^{a-1}(a + a\log x)$ より,\smallskip%
Pにおける $y = x^a\log x$ の接線は,\\
\begin{minipage}{240pt}
\begin{gather*}
y
= t^{a-1}(1 + a\log t)(x - t) + t^a\log t
\end{gather*}
よってQの$x$座標は,
\begin{gather*}
t^{a-1}(1 + a\log t)(x - t) + t^a\log t
= 0 \\
\therefore \,\,\,
x = t - \frac{t\log t}{1 + a\log t}\,\,(< t) \quad
(\,\because\,\,\,t > 1)
\end{gather*}
したがって,
\end{minipage}
\begin{minipage}{120pt}
%\input{osaka89s4f_zu_2}
%WinTpicVersion3.08
\unitlength 0.1in
\begin{picture}( 20.4700, 13.5800)( 4.7000,-17.5800)
% STR 2 0 3 0
% 3 843 390 843 400 4 2800
% $y$
\put(8.4300,-4.0000){\makebox(0,0)[rt]{$y$}}%
% STR 2 0 3 0
% 3 2520 1408 2520 1420 4 2600
% $x$
\put(25.2000,-14.2000){\makebox(0,0)[rt]{$x$}}%
% VECTOR 2 0 3 0
% 2 902 1758 902 400
%
\special{pn 8}%
\special{pa 902 1758}%
\special{pa 902 400}%
\special{fp}%
\special{sh 1}%
\special{pa 902 400}%
\special{pa 882 468}%
\special{pa 902 454}%
\special{pa 922 468}%
\special{pa 902 400}%
\special{fp}%
% FUNC 2 0 3 0
% 9 470 400 2517 1758 909 1387 1786 1387 909 1264 470 400 2517 1758 0 3 0 0
% 10x^2ln(x)
\special{pn 8}%
\special{pa 910 1388}%
\special{pa 916 1388}%
\special{pa 920 1388}%
\special{pa 926 1390}%
\special{pa 930 1390}%
\special{pa 936 1392}%
\special{pa 940 1392}%
\special{pa 946 1394}%
\special{pa 950 1396}%
\special{pa 956 1398}%
\special{pa 960 1400}%
\special{pa 966 1402}%
\special{pa 970 1404}%
\special{pa 976 1406}%
\special{pa 980 1408}%
\special{pa 986 1410}%
\special{pa 990 1412}%
\special{pa 996 1414}%
\special{pa 1000 1418}%
\special{pa 1006 1420}%
\special{pa 1010 1422}%
\special{pa 1016 1426}%
\special{pa 1020 1428}%
\special{pa 1026 1432}%
\special{pa 1030 1434}%
\special{pa 1036 1436}%
\special{pa 1040 1440}%
\special{pa 1046 1442}%
\special{pa 1050 1446}%
\special{pa 1056 1448}%
\special{pa 1060 1452}%
\special{pa 1066 1454}%
\special{pa 1070 1458}%
\special{pa 1076 1460}%
\special{pa 1080 1464}%
\special{pa 1086 1468}%
\special{pa 1090 1470}%
\special{pa 1096 1474}%
\special{pa 1100 1476}%
\special{pa 1106 1480}%
\special{pa 1110 1482}%
\special{pa 1116 1486}%
\special{pa 1120 1488}%
\special{pa 1126 1492}%
\special{pa 1130 1496}%
\special{pa 1136 1498}%
\special{pa 1140 1502}%
\special{pa 1146 1504}%
\special{pa 1150 1508}%
\special{pa 1156 1510}%
\special{pa 1160 1514}%
\special{pa 1166 1516}%
\special{pa 1170 1520}%
\special{pa 1176 1522}%
\special{pa 1180 1526}%
\special{pa 1186 1528}%
\special{pa 1190 1532}%
\special{pa 1196 1534}%
\special{pa 1200 1536}%
\special{pa 1206 1540}%
\special{pa 1210 1542}%
\special{pa 1216 1546}%
\special{pa 1220 1548}%
\special{pa 1226 1550}%
\special{pa 1230 1554}%
\special{pa 1236 1556}%
\special{pa 1240 1558}%
\special{pa 1246 1560}%
\special{pa 1250 1564}%
\special{pa 1256 1566}%
\special{pa 1260 1568}%
\special{pa 1266 1570}%
\special{pa 1270 1572}%
\special{pa 1276 1574}%
\special{pa 1280 1576}%
\special{pa 1286 1578}%
\special{pa 1290 1582}%
\special{pa 1296 1584}%
\special{pa 1300 1584}%
\special{pa 1306 1586}%
\special{pa 1310 1588}%
\special{pa 1316 1590}%
\special{pa 1320 1592}%
\special{pa 1326 1594}%
\special{pa 1330 1596}%
\special{pa 1336 1598}%
\special{pa 1340 1598}%
\special{pa 1346 1600}%
\special{pa 1350 1602}%
\special{pa 1356 1602}%
\special{pa 1360 1604}%
\special{pa 1366 1604}%
\special{pa 1370 1606}%
\special{pa 1376 1608}%
\special{pa 1380 1608}%
\special{pa 1386 1608}%
\special{pa 1390 1610}%
\special{pa 1396 1610}%
\special{pa 1400 1612}%
\special{pa 1406 1612}%
\special{pa 1410 1612}%
\special{pa 1416 1612}%
\special{pa 1420 1614}%
\special{pa 1426 1614}%
\special{pa 1430 1614}%
\special{pa 1436 1614}%
\special{pa 1440 1614}%
\special{pa 1446 1614}%
\special{pa 1450 1614}%
\special{pa 1456 1614}%
\special{pa 1460 1614}%
\special{pa 1466 1612}%
\special{pa 1470 1612}%
\special{pa 1476 1612}%
\special{pa 1480 1612}%
\special{pa 1486 1610}%
\special{pa 1490 1610}%
\special{pa 1496 1608}%
\special{pa 1500 1608}%
\special{pa 1506 1606}%
\special{pa 1510 1606}%
\special{pa 1516 1604}%
\special{pa 1520 1604}%
\special{pa 1526 1602}%
\special{pa 1530 1600}%
\special{pa 1536 1598}%
\special{pa 1540 1598}%
\special{pa 1546 1596}%
\special{pa 1550 1594}%
\special{pa 1556 1592}%
\special{pa 1560 1590}%
\special{pa 1566 1588}%
\special{pa 1570 1586}%
\special{pa 1576 1582}%
\special{pa 1580 1580}%
\special{pa 1586 1578}%
\special{pa 1590 1576}%
\special{pa 1596 1572}%
\special{pa 1600 1570}%
\special{pa 1606 1566}%
\special{pa 1610 1564}%
\special{pa 1616 1560}%
\special{pa 1620 1558}%
\special{pa 1626 1554}%
\special{pa 1630 1550}%
\special{pa 1636 1546}%
\special{pa 1640 1544}%
\special{pa 1646 1540}%
\special{pa 1650 1536}%
\special{pa 1656 1532}%
\special{pa 1660 1528}%
\special{pa 1666 1524}%
\special{pa 1670 1518}%
\special{pa 1676 1514}%
\special{pa 1680 1510}%
\special{pa 1686 1506}%
\special{pa 1690 1500}%
\special{pa 1696 1496}%
\special{pa 1700 1490}%
\special{pa 1706 1486}%
\special{pa 1710 1480}%
\special{pa 1716 1476}%
\special{pa 1720 1470}%
\special{pa 1726 1464}%
\special{pa 1730 1458}%
\special{pa 1736 1452}%
\special{pa 1740 1446}%
\special{pa 1746 1442}%
\special{pa 1750 1434}%
\special{pa 1756 1428}%
\special{pa 1760 1422}%
\special{pa 1766 1416}%
\special{pa 1770 1410}%
\special{pa 1776 1402}%
\special{pa 1780 1396}%
\special{pa 1786 1388}%
\special{pa 1790 1382}%
\special{pa 1796 1374}%
\special{pa 1800 1368}%
\special{pa 1806 1360}%
\special{pa 1810 1352}%
\special{pa 1816 1344}%
\special{pa 1820 1338}%
\special{pa 1826 1330}%
\special{pa 1830 1322}%
\special{pa 1836 1312}%
\special{pa 1840 1304}%
\special{pa 1846 1296}%
\special{pa 1850 1288}%
\special{pa 1856 1280}%
\special{pa 1860 1270}%
\special{pa 1866 1262}%
\special{pa 1870 1252}%
\special{pa 1876 1244}%
\special{pa 1880 1234}%
\special{pa 1886 1224}%
\special{pa 1890 1216}%
\special{pa 1896 1206}%
\special{pa 1900 1196}%
\special{pa 1906 1186}%
\special{pa 1910 1176}%
\special{pa 1916 1166}%
\special{pa 1920 1156}%
\special{pa 1926 1144}%
\special{pa 1930 1134}%
\special{pa 1936 1124}%
\special{pa 1940 1112}%
\special{pa 1946 1102}%
\special{pa 1950 1090}%
\special{pa 1956 1080}%
\special{pa 1960 1068}%
\special{pa 1966 1056}%
\special{pa 1970 1044}%
\special{pa 1976 1032}%
\special{pa 1980 1020}%
\special{pa 1986 1008}%
\special{pa 1990 996}%
\special{pa 1996 984}%
\special{pa 2000 972}%
\special{pa 2006 960}%
\special{pa 2010 946}%
\special{pa 2016 934}%
\special{pa 2020 920}%
\special{pa 2026 908}%
\special{pa 2030 894}%
\special{pa 2036 880}%
\special{pa 2040 868}%
\special{pa 2046 854}%
\special{pa 2050 840}%
\special{pa 2056 826}%
\special{pa 2060 812}%
\special{pa 2066 798}%
\special{pa 2070 782}%
\special{pa 2076 768}%
\special{pa 2080 754}%
\special{pa 2086 738}%
\special{pa 2090 724}%
\special{pa 2096 708}%
\special{pa 2100 694}%
\special{pa 2106 678}%
\special{pa 2110 662}%
\special{pa 2116 646}%
\special{pa 2120 630}%
\special{pa 2126 614}%
\special{pa 2130 598}%
\special{pa 2136 582}%
\special{pa 2140 566}%
\special{pa 2146 550}%
\special{pa 2150 532}%
\special{pa 2156 516}%
\special{pa 2160 498}%
\special{pa 2166 482}%
\special{pa 2170 464}%
\special{pa 2176 446}%
\special{pa 2180 428}%
\special{pa 2186 412}%
\special{pa 2188 400}%
\special{sp}%
% VECTOR 2 0 3 0
% 2 738 1387 2509 1387
%
\special{pn 8}%
\special{pa 738 1388}%
\special{pa 2510 1388}%
\special{fp}%
\special{sh 1}%
\special{pa 2510 1388}%
\special{pa 2442 1368}%
\special{pa 2456 1388}%
\special{pa 2442 1408}%
\special{pa 2510 1388}%
\special{fp}%
% LINE 2 0 3 0
% 2 1753 1758 2200 400
%
\special{pn 8}%
\special{pa 1754 1758}%
\special{pa 2200 400}%
\special{fp}%
% DOT 0 0 3 0
% 1 2103 683
%
\special{pn 20}%
\special{sh 1}%
\special{ar 2104 684 10 10 0 6.28318530717959E+0000}%
% LINE 2 0 3 0
% 2 2103 1387 2103 683
%
\special{pn 8}%
\special{pa 2104 1388}%
\special{pa 2104 684}%
\special{fp}%
% STR 2 0 3 0
% 3 1715 1266 1715 1357 2 0
% {\footnotesize 1}
\put(17.1500,-13.5700){\makebox(0,0)[lb]{{\footnotesize 1}}}%
% STR 2 0 3 0
% 3 2150 670 2150 760 2 0
% {\footnotesize P}
\put(21.5000,-7.6000){\makebox(0,0)[lb]{{\footnotesize P}}}%
% STR 2 0 3 0
% 3 2067 1419 2067 1510 2 0
% {\footnotesize R}
\put(20.6700,-15.1000){\makebox(0,0)[lb]{{\footnotesize R}}}%
% STR 2 0 3 0
% 3 1880 1440 1880 1530 2 0
% {\footnotesize Q}
\put(18.8000,-15.3000){\makebox(0,0)[lb]{{\footnotesize Q}}}%
% STR 2 0 3 0
% 3 1011 842 1011 932 2 0
% {\scriptsize$y=x^a\log x$}
\put(10.1100,-9.3200){\makebox(0,0)[lb]{{\scriptsize$y=x^a\log x$}}}%
% CIRCLE 3 0 3 0
% 4 1824 1212 1995 1862 659 788 587 2006
%
\special{pn 4}%
\special{ar 1824 1212 672 672 2.5709501 3.4906393}%
% STR 2 0 3 0
% 3 780 1425 780 1520 2 0
% {\footnotesize O}
\put(7.8000,-15.2000){\makebox(0,0)[lb]{{\footnotesize O}}}%
\end{picture}%
\end{minipage}
\begin{align*}
S_1(t)
&= \frac{1}{2}
\left\{t - \left(t - \frac{t\log t}{1 + a\log t} \right) \right\}
\cdot t^a\log t \\[1mm]
&= \frac{t^{a+1}(\log t)^2}{2(1 + a\log t)}
\tag*{$\cdott\MARU{1}$}
\end{align*}
また,
\begin{align*}
S_2(t)
&= \int_1^t x^a\log x\,dx
= \int_1^t \left(\frac{x^{a+1}}{a+1} \right)^{\!\! \prime}
\log x\,dx \\[1mm]
&= \lll \frac{x^{a+1}}{a+1}\log x \rrr_1^t
- \frac{1}{a+1}\int_1^t x^a\,dx \\[1mm]
&= \frac{t^{a+1}\log t}{a + 1}
- \frac{t^{a+1} - 1}{(a + 1)^2}
\tag*{$\cdott\MARU{2}$}
\end{align*}
\MARU{1},\,\,\MARU{2}より,
\begin{align*}
\frac{S_2(t)}{S_1(t)}
&= \frac{t^{a+1}\log t}{a + 1} \cdot
\frac{2(1 + a\log t)}{t^{a+1}(\log t)^2}
- \frac{t^{a+1} - 1}{(a + 1)^2} \cdot
\frac{2(1 + a\log t)}{t^{a+1}(\log t)^2} \\[1mm]
&= \frac{2}{a + 1}\!
\left(\frac{1}{\log t} + a \right)
- \frac{2}{(a + 1)^2}\!
\left(1 - \frac{1}{t^{a+1}} \right)\!
\left\{\frac{1}{(\log t)^2} + \frac{a}{\log t} \right\}
\end{align*}
$\lim\limits_{t \to \infty} \dfrac{1}{\log t} = 0$ より,
\begin{align*}
\lim_{t \to \infty} \frac{S_2(t)}{S_1(t)}
= \textcolor{red}{\boldsymbol{\frac{2a}{a + 1}}}
\tag*{$\Ans$}
\end{align*}
\end{document}