群構造が はいつたら どんな 美味しい 事 が ありますか?

@t さん

  • 公開日時: 2018/11/02 22:38
  • 閲覧数: 60
  • コメント数: 0
  • カテゴリ: 入試・教育

    中学生知悉の 易し過ぎの 直線 L; y=2*(x - 3)- 67/4
           上には 無論 ●有理点が 無限に在り●
                      例えば
{{-1, -(99/4)}, {-(68/69), -(6823/276)}, {-(67/69), -(6815/276)}, {-(
   22/23), -(2269/92)}, {-(65/69), -(6799/276)}, {-(64/69), -(6791/
   276)}, {-(21/23), -(2261/92)}, {-(62/69), -(6775/276)}, {-(61/
   69), -(6767/276)}, {-(20/23), -(2253/92)}, {-(59/69), -(6751/
   276)}, {-(58/69), -(6743/276)}, {-(19/23), -(2245/92)}, {-(56/
   69), -(6727/276)}, {-(55/69), -(6719/276)}, {-(18/23), -(2237/
   92)}, {-(53/69), -(6703/276)}, {-(52/69), -(6695/276)}, {-(17/
   23), -(2229/92)}, {-(50/69), -(6679/276)}, {-(49/69), -(6671/
   276)}, {-(16/23), -(2221/92)}, {-(47/69), -(6655/276)}, {-(2/3), -(
   289/12)}, {-(15/23), -(2213/92)}, {-(44/69), -(6631/276)}, {-(43/
   69), -(6623/276)}, {-(14/23), -(2205/92)}, {-(41/69), -(6607/
   276)}, {-(40/69), -(6599/276)}, {-(13/23), -(2197/92)}, {-(38/
   69), -(6583/276)}, {-(37/69), -(6575/276)}, {-(12/23), -(2189/
   92)}, {-(35/69), -(6559/276)}, {-(34/69), -(6551/276)}, {-(11/
   23), -(2181/92)}, {-(32/69), -(6535/276)}, {-(31/69), -(6527/
   276)}, {-(10/23), -(2173/92)}, {-(29/69), -(6511/276)}, {-(28/
   69), -(6503/276)}, {-(9/23), -(2165/92)}, {-(26/69), -(6487/
   276)}, {-(25/69), -(6479/276)}, {-(8/23), -(2157/92)}, {-(1/3), -(
   281/12)}, {-(22/69), -(6455/276)}, {-(7/23), -(2149/92)}, {-(20/
   69), -(6439/276)}, {-(19/69), -(6431/276)}, {-(6/23), -(2141/
   92)}, {-(17/69), -(6415/276)}, {-(16/69), -(6407/276)}, {-(5/
   23), -(2133/92)}, {-(14/69), -(6391/276)}, {-(13/69), -(6383/
   276)}, {-(4/23), -(2125/92)}, {-(11/69), -(6367/276)}, {-(10/
   69), -(6359/276)}, {-(3/23), -(2117/92)}, {-(8/69), -(6343/
   276)}, {-(7/69), -(6335/276)}, {-(2/23), -(2109/92)}, {-(5/69), -(
   6319/276)}, {-(4/69), -(6311/276)}, {-(1/23), -(2101/92)}, {-(2/
   69), -(6295/276)}, {-(1/69), -(6287/276)}, {0, -(91/4)}, {1/
  69, -(6271/276)}, {2/69, -(6263/276)}, {1/23, -(2085/92)}, {4/
  69, -(6247/276)}, {5/69, -(6239/276)}, {2/23, -(2077/92)}, {7/
  69, -(6223/276)}, {8/69, -(6215/276)}, {3/23, -(2069/92)}, {10/
  69, -(6199/276)}, {11/69, -(6191/276)}, {4/23, -(2061/92)}, {13/
  69, -(6175/276)}, {14/69, -(6167/276)}, {5/23, -(2053/92)}, {16/
  69, -(6151/276)}, {17/69, -(6143/276)}, {6/23, -(2045/92)}, {19/
  69, -(6127/276)}, {20/69, -(6119/276)}, {7/23, -(2037/92)}, {22/
  69, -(6103/276)}, {1/3, -(265/12)}, {8/23, -(2029/92)}, {25/
  69, -(6079/276)}, {26/69, -(6071/276)}, {9/23, -(2021/92)}, {28/
  69, -(6055/276)}, {29/69, -(6047/276)}, {10/23, -(2013/92)}, {31/
  69, -(6031/276)}, {32/69, -(6023/276)}, {11/23, -(2005/92)}, {34/
  69, -(6007/276)}, {35/69, -(5999/276)}, {12/23, -(1997/92)}, {37/
  69, -(5983/276)}, {38/69, -(5975/276)}, {13/23, -(1989/92)}, {40/
  69, -(5959/276)}, {41/69, -(5951/276)}, {14/23, -(1981/92)}, {43/
  69, -(5935/276)}, {44/69, -(5927/276)}, {15/23, -(1973/92)}, {2/
  3, -(257/12)}, {47/69, -(5903/276)}, {16/23, -(1965/92)}, {49/
  69, -(5887/276)}, {50/69, -(5879/276)}, {17/23, -(1957/92)}, {52/
  69, -(5863/276)}, {53/69, -(5855/276)}, {18/23, -(1949/92)}, {55/
  69, -(5839/276)}, {56/69, -(5831/276)}, {19/23, -(1941/92)}, {58/
  69, -(5815/276)}, {59/69, -(5807/276)}, {20/23, -(1933/92)}, {61/
  69, -(5791/276)}, {62/69, -(5783/276)}, {21/23, -(1925/92)}, {64/
  69, -(5767/276)}, {65/69, -(5759/276)}, {22/23, -(1917/92)}, {67/
  69, -(5743/276)}, {68/69, -(5735/276)}, {1, -(83/4)}}
 
https://userdisk.webry.biglobe.ne.jp/020/691/47/N000/000/007/154115859347244523177.gif

 この有理点全体の集合 L∩Q^2 に 群構造が 入る ように
    和を 定義して 単位元も 求めて下さい;
     「あなたならどう 定義 する」
 https://www.youtube.com/watch?v=2-C9PAFmL5c&start_radio=1&list=RD2-C9PAFmL5c#t=36
 
  群構造が はいつたら どんな 美味しい 事 が ありますか?
 
 
 https://artofproblemsolving.com/community/c7t177f7h1674375_the_rational_points_on_curvex4y4x2y25x25y2130
The rational points on curve:  c; x^4+y^4-x^2y^2-5x^2-5y^2+13=0
c∩Q^2 が 空でなければ 群構造を ゐれて下さい;


c∩Q^2 が 空ならば 其の証明を願います;


cの双対曲線 c^★を 多様な発想で 是非 求めて下さい;
斎次化( Homogenization ; 同次化 ) は しておきます;
X^4 - X^2 Y^2 + Y^4 - 5 X^2 Z^2 - 5 Y^2 Z^2 + 13 Z^4=0

c^★ の 特異点達を 求めて下さい;

c には 無論 高校生が よく指導され 邂逅する 二重接線 達が 在る。
              それ等を 全てモトメテ下さい;

c^★の 有理点全体の集合 c^★∩Q^2 に 群構造が 入る ように
  和を 定義して 単位元も 求めて下さい;
  
  

公序良俗に反する不適切な投稿を発見された方はこちらよりご報告ください

この投稿にフォローする

コメントをつけるにはログインが必要です。

コメントはまだありません。