数学博物館『すうじあむ』にようこそ。 『すうじあむ』は数学の問題・解答・解説のデータベースをはじめ 数学に関するあらゆる情報が詰まったポータルサイトです。
(1)或る9つの異なる点において,次の条件を満たすとき,9つのうち8つが同一円周上に存在することを示せ.
条件:どの5点に於いても,そのうち4点が同一円周上に存在する.
(2)三角形ABCに於いて,∠A内の傍心をI_Aとおく.辺BC,AB,AC上にそれぞれ点D,P,Qが在って,AP=CD,AQ=BDを満たしている.
また,三角形PBDと三角形QCD其々の外接円は2点で交わるとする.
この2つの交点のうち点Dでないものを点Eとおく.このとき,点I_A,D,Eは同一直線上に在ることを示せ.
公序良俗に反する不適切な投稿を発見された方はこちらよりご報告ください
コメントをつけるにはログインが必要です。
No | 投稿者 | 日時 | ||
---|---|---|---|---|
1 | prime_132 さん | 2017/11/09 10:40:31 | 報告 | |
2 | prime_132 さん | 2017/11/27 21:01:23 | 報告 |